Tytuł artykułu
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper studies neutral Liouville-Caputo-type fractional differential equations and inclusions supplemented with nonlocal Riemann-Liouville-type integral boundary conditions. Sadovskii’s fixed point theorem is applied to establish the existence result for the single-valued case, while the multivalued case is investigated by using nonlinear alternative for contractive maps. Examples are constructed to illustrate the main results. The case of nonlinear nonlocal boundary conditions is also discussed.
Wydawca
Czasopismo
Rocznik
Tom
Strony
119--130
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
- Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
autor
- Department of Mathematics, University of Ioannina, 451 10 Ioannina, Greece; and Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
autor
- Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
Bibliografia
- [1] B. Ahmad, M. Alghanmi, A. Alsaedi, H. M. Srivastava and S. K. Ntouyas, The Langevin equation in terms of generalized Liouville-Caputo derivatives with nonlocal boundary conditions involving a generalized fractional integral, Mathematics 7 (2019), Article ID 533.
- [2] B. Ahmad and R. Luca, Existence of solutions for sequential fractional integro-differential equations and inclusions with nonlocal boundary conditions, Appl. Math. Comput. 339 (2018), 516-534.
- [3] B. Ahmad and S. K. Ntouyas, Some fractional-order one-dimensional semi-linear problems under nonlocal integral boundary conditions, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 110 (2016), no. 1, 159-172.
- [4] B. Ahmad and S. K. Ntouyas, Boundary value problems of Hadamard-type fractional differential equations and inclusions with nonlocal conditions, Vietnam J. Math. 45 (2017), no. 3, 409-423.
- [5] B. Ahmad, S. K. Ntouyas and J. Tariboon, Fractional differential equations with nonlocal integral and integer-fractional-order Neumann type boundary conditions, Mediterr. J. Math. 13 (2016), no. 5, 2365-2381.
- [6] A. Alsaedi, M. Alsulami, H. M. Srivastava, B. Ahmad and S. K. Ntouyas, Existence theory for nonlinear third-order ordinary differential equations with nonlocal multi-point and multi-strip boundary conditions, Symmetry 11 (2019), Article ID 281.
- [7] A. Alsaedi, S. K. Ntouyas, R. P. Agarwal and B. Ahmad, On Caputo type sequential fractional differential equations with nonlocal integral boundary conditions, Adv. Difference Equ. 2015 (2015), Article ID 33.
- [8] K. Deimling, Multivalued Differential Equations, De Gruyter Ser. Nonlinear Anal. Appl. 1, Walter de Gruyter, Berlin, 1992.
- [9] H. Fazli and J. J. Nieto, Fractional Langevin equation with anti-periodic boundary conditions, Chaos Solitons Fractals 114 (2018), 332-337.
- [10] J. R. Graef, L. Kong and M. Wang, Existence and uniqueness of solutions for a fractional boundary value problem on a graph, Fract. Calc. Appl. Anal. 17 (2014), no. 2, 499-510.
- [11] A. Granas and J. Dugundji, Fixed Point Theory, Springer Monogr. Math., Springer, New York, 2003.
- [12] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Math. Stud. 204, Elsevier Science, Amsterdam, 2006.
- [13] M. Kisielewicz, Differential Inclusions and Optimal Control, Math. Appl. (East European Series) 44, Kluwer Academic, Dordrecht, 1991.
- [14] A. Lasota and Z. Opial, An application of the Kakutani—Ky Fan theorem in the theory of ordinary differential equations, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 13 (1965), 781-786.
- [15] S. K. Ntouyas, S. Etemad and J. Tariboon, Existence of solutions for fractional differential inclusions with integral boundary conditions, Bound. Value Probl. 2015 (2015), Article ID 92.
- [16] S. K. Ntouyas, J. Tariboon and C. Thaiprayoon, Nonlocal boundary value problems for Riemann-Liouville fractional differential inclusions with Hadamard fractional integral boundary conditions, Taiwanese J. Math. 20 (2016), no. 1, 91-107.
- [17] W. V. Petryshyn and P. M. Fitzpatrick, A degree theory, fixed point theorems, and mapping theorems for multivalued noncompact mappings, Trans. Amer. Math. Soc. 194 (1974), 1-25.
- [18] J. Sabatier, O. P. Agrawal and J. A. T. Machado, Advances in Fractional Calculus, Springer, Dordrecht, 2007.
- [19] B. N. Sadovski˘ı, On a fixed point principle, Funktsional. Anal. i Prilozhen. 1 (1967), no. 2, 74-76.
- [20] E. Zeidler, Nonlinear Functional Analysis and its Applications: Fixed-point Theorems, Springer, New York, 1986.
- [21] L. Zhang, B. Ahmad and G. Wang, Successive iterations for positive extremal solutions of nonlinear fractional differential equations on a half-line, Bull. Aust. Math. Soc. 91 (2015), no. 1, 116-128.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-71460f3f-46e8-4fe5-9a57-f1adaf84c26a