Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This review paper presents a shortcoming associated to data mining algorithm(s) classification, clustering, association and regression which are highly used as a tool in different research communities. Data mining researches has successfully handling large amounts of dataset to solve the problems. An increase in data sizes was brought a bottleneck on algorithms to retrieve hidden knowledge from a large volume of datasets. On the other hand, data mining algorithm(s) has been unable to analysis the same rate of growth. Data mining algorithm(s) must be efficient and visual architecture in order to effectively extract information from huge amounts of data in many data repositories or in dynamic data streams. Data visualization researchers believe in the importance of giving users an overview and insight into the data distributions. The combination of the graphical interface is permit to navigate through the complexity of statistical and data mining techniques to create powerful models. Therefore, there is an increasing need to understand the bottlenecks associated with the data mining algorithms in modern architectures and research community. This review paper basically to guide and help the researchers specifically to identify the shortcoming of data mining techniques with domain area in solving a certain problems they will explore. It also shows the research areas particularly a multimedia (where data can be sequential, audio signal, video signal, spatio-temporal, temporal, time series etc) in which data mining algorithms not yet used.
Czasopismo
Rocznik
Tom
Strony
73--86
Opis fizyczny
Bibliogr. 26 poz., tab.
Twórcy
autor
- Jimma University, Faculty of Computing, Department of Information Technology, Jimma, Ethiopia
Bibliografia
- [1] Agrawal, R., & Srikant, R. (2015). Fast algorithms for mining association rules. In Proc. of the 20th International Conference on Very Large Data Bases (VLDB) (pp. 487–499). Santiago, Chile.
- [2] Al-Khoder, A., & Harmouch, H. (2015). Evaluating Four Of The most Popular Open Source and Free Data Mining Tools. International Journal of Academic Scientific Research, 3(10), 13–23.
- [3] Bavisi, S., Mehta, J., & Lopes, L. (2014). A Comparative Study of Different Data Mining Algorithms. International Journal of Current Engineering and Technology, 4(5), 3248–3252.
- [4] Gulli, A., & Pal, S. (2017). Deep Learning with Keras-Implement neural networks with Keras on Theano and Tensor Flow. Birmingham, UK: Packt Publishing.
- [5] Huang, H. C., & Hou, C. I. (2017). Tourism Demand Forecasting Model Using Neural Network. Interna-tional Journal of Computer Science & Information Technology (IJCSIT), 9(2), 19–29.
- [6] Joseph, S. R., Hlomani, H., & Letsholo, K. (2016). Data Mining Algorithms: An Overview. International journal of Computers and Technology, 15(6), 6806–6813.
- [7] Kalyani, J., Bharathi, H. N., & Rao, J. (2016) Stock Trend Prediction Using News Sentiment Analysis, International Journal of Computer Science & Information Technology (IJCSIT), 8(3), 67–76.
- [8] Kotu, V., & Deshpande, B. (2015). Predictive Analytics and Data Mining – Concepts and Practice with RapidMiner. Elsevier.
- [9] Kumbhare, T. A., & Chobe, S. V. (2014) An Overview of Association Rule Mining Algorithms. International Journal of Computer Science and Information Technologies, 5(1), 927–930.
- [10] Massaro, A., Barbuzzi, D., Vitti, V., Galiano, A., Aruci, M., & Pirlo, G. (2016), Predictive Sales Analysis According to the Effect of Weather. In Proceeding of the 2nd International Conference on Recent Trends and Applications in Computer Science and Information Technology (pp. 53–55). Tirana, Albania.
- [11] Massaro, A., Galiano, A., Barbuzzi, D., Pellicani, L., Birardi, G., Romagno, D. D., & Frulli, L., (2017). Joint Activities of Market Basket Analysis and Product Facing for Business Intelligence oriented on Global Distribution Market: examples of data mining applications. International Journal of Computer Science and Information Technologies, 8(2), 178–183.
- [12] Massaro, A., Maritati, V., & Galiano, A. (2018). Data Mining Model Performance of Sales Predictive Algorithms Based On Rapidminer Workflows. International Journal of Computer Science & Information Technology (IJCSIT), 10 (3) 39–56. doi:10.5121/ijcsit.2018.10303
- [13] Negandhi, G. (2007). Apriori Algorithm Review for Finals (SE 157B). Spring Semester.
- [14] Nguyen, H.-L., Woon, Y. K., & Ng, W. K. (2015). A Survey on Data Stream Clustering and Classifi-cation. Knowledge and Information Systems, 45(3), 535–569. doi:10.1007/s10115-014-0808-1
- [15] Otha, M., & Higuci, Y. (2013). Study on Design of Supermarket Store Layouts: the Principle of Sales Magnet, World Academy of Science. Engineering and Technology, 7(1), 209–212.
- [16] Ozisikyilmaz, B. (2009). Analysis, Characterization and Design of Data Mining Applications and Applications to Computer Architecture (Unpublished doctoral dissertation). Northwestern University, Evanston, Illinois.
- [17] Rehman, N. (2017). Data Mining Techniques Methods Algorithms and Tools. International of Computer Science and Mobile Computing, 6(7), 227–231.
- [18] Shneiderman, B. (2003). Inventing discovery tools: Combining information visualization with data mining. In The Craft of Information Visualization Readings and Reflections Interactive Technologies (pp.378-385). Morgan Kaufmann. doi:10.1016/B978-155860915-0/50048-2
- [19] Štulec, I., Petljak, K., & Kukor, A. (2016). The Role of Store Layout and Visual Merchandising in Food Retailing. European Journal of Economics and Business Studies, 4(1), 139–152.
- [20] Swarndeep Saket, J., & Pandya, S. (2016). An Overview of Partitioning Algorithms in Clustering Techniques. International Journal of Advanced Research in Computer Engineering & Tech-nology (IJARCET), 5(6), 1943–1946.
- [21] Talia, D., Trunfio, P., & Marozzo, F. (2016). Data Analysis in the Cloud: Models and Techniques for Cloud-Based Data Analysis. Elsevier Science.
- [22] Wimmer, H., & Powell, L. M. (2015) A Comparison of Open Source Tools for Data Science, In Proceedings of the Conference on Information Systems Applied Research (v8 n3651). Wilmington, North Carolina USA.
- [23] Wu, X., Kumar, V., Ross Quinlan, J., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G. J., Ng, A., Liu, B., Yu, P. S., Zhou, Z.-H., Steinbach, M., Hand, D. J., & Steinberg, D. (2007). Top 10 algorithms in data mining. London, UK: Springer-Verlag London Limited.
- [24] Xu, D., & Tian, Y. (2015). A Comprehensive Survey of Clustering Algorithms. Annals of Data Science, 2(2), 165–193. doi:10.1007/s40745-015-0040-1
- [25] Yadav, Ch., Wang, S., & Kumar, M. (2013) Algorithm and approaches to handle large Data-A Survey, International Journal of Computer Science and Network, 2(3), 1307.5437.
- [26] Zafarani, R., Abbasi, M., & Liu, H. (2014). Social Media Mining. Cambridge: Cambridge University Press. doi:10.1017/CBO9781139088510
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7145da4b-6a48-48a9-8d57-124be13570bb