PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

CaO-based high temperature CO2 sorbents – Literature review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The use of CaO-based adsorbents has a high potential to capture CO2 from various systems due to its high reactivity with CO2, high capacity, and low cost of naturally derived CaO. The application of CaO-based sorbents to remove carbon dioxide is based on a reversible reaction between CaO and CO2. However, multiple carbonation/calcination cycles lead to a rapid reduction in the sorption capacity of natural CaO, and therefore efforts are made to reduce this disadvantage by doping, regenerating, or producing synthetic CaO with stable sorption properties. In this review, the synthesis methods used to obtain CaO-based sorbents were collected, and the latest research on improving their sorption properties was presented. The most commonly used models to describe the CO2 sorption kinetics on CaO-based sorbents were also introduced. The methods of sorbent regeneration and their effectiveness were summarized. In the last part of this review, the current state of advancement of work on the larger scale, possible problems, and opportunities during scale-up of the calcium looping process were presented. Concluding (i) the presented methods of adsorbent synthesis allow for the production of doped CaO adsorbents on a laboratory scale, characterized by high CO2 capture efficiency and good cyclic stability, (ii) the most commonly used in practice models describing CO2 chemisorption are empirical models and the shrinking core model, (iii) the use of sorbent regeneration allows for a significant improvement in sorption capacity, (iv) the scale-up of both the production of new CaO adsorbents and the CO2 capture technology with their use requires further development.
Rocznik
Strony
411–--438
Opis fizyczny
Bibliogr. 128 poz., rys. tab.
Twórcy
  • Gdansk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, ul. Narutowicza 11/12, 80-233 Gdansk, Poland
  • Gdansk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, ul. Narutowicza 11/12, 80-233 Gdansk, Poland
  • FLUOR S.A., ul. Prymasa Stefana Wyszynskiego 11, 44-100 Gliwice, Poland
Bibliografia
  • 1. Abanades J.C., Alvarez D., 2003. Conversion limits in the reaction of CO2 with lime. Energy Fuels, 17, 308–315. DOI: 10.1021/ef020152a.
  • 2. Akgsornpeak A., Witoon T., Mungcharoen T., Limtrakul J., 2014. Development of synthetic CaO sorbents via CTAB-assisted sol–gel method for CO2 capture at high temperature. Chem. Eng. J., 237, 189–198. DOI: 10.1016/j.cej.2013.10.023.
  • 3. Anderson T.R., Hawkins E., Jones P.D., 2016. CO2, the greenhouse effect and global warming: from the pioneering work of Arrhenius and Callendar to today’s Earth System Models. Endeavour, 40, 178–187. DOI: 10.1016/j.endeavour.2016.07.002.
  • 4. Andre L.,Abanades S., 2017. Evaluation and performances comparison of calcium, strontium and barium carbonates during calcination/carbonation reactions for solar thermochemical energy storage. J. Energy Storage, 13, 193–205. DOI: 10.1016/j.est.2017.07.014.
  • 5. Antzara A., Heracleous E., Lemonidou A.A., 2014. Development of CaO-based mixed oxides as stable sorbents for post-combustion CO2 capture via carbonate looping. Energy Procedia, 63, 2160–2169. DOI: 10.1016/j.egypro.2014.11.235.
  • 6. Asiedu-Boateng P., Legros R., Patience G.S., 2016. Attrition resistance of calcium oxide–copper oxide–cement sorbents for post-combustion carbon dioxide capture. Adv.Powder Technol., 27, 786–795. DOI: 10.1016/j.apt.2016.03.007.
  • 7. Ayobi M., Shahhosseini S., Behjat Y., 2014. Computational and experimental investigation of CO2 capture in gas–solid bubbling fluidized bed. J. Taiwan Inst. Chem. Eng., 45, 421–430. DOI: 10.1016/j.jtice.2013.06.009.
  • 8. Baker E.H., 1962. The calcium oxide – carbon dioxide system in the pressure range 1-300 atmospheres. J. Chem. Soc., 464–470. DOI: 10.1039/JR9620000464.
  • 9. Barzagli F., Giorgi C., Mani F., Peruzzini M., 2017. CO2 capture by aqueous Na2CO3 integrated with high-quality CaCO3 formation and pure CO2 release at room conditions. J. CO2 Util., 22, 346–354. DOI: 10.1016/j.jcou.2017.10.016.
  • 10. Bazaikin Y.V., Malkovich E.G., Derevschikov V.S., Lysikov A., Okunev A.G., 2016. Evolution of sorptive and textural properties of CaO-based sorbents during repetitive sorption/regeneration cycles. Chem. Eng. Sci., 152, 709–716. DOI: 10.1016/j.ces.2016.06.064.
  • 11. Bhatja S.K., Perlmutter D.D., 1983. Effect of the product layer on the kinetics of the CO2-lime reaction. AIChE J., 29, 79–86. DOI: 10.1002/aic.690290111.
  • 12. Bian Z., Li Y., Zhang C., Zhao J., Wang Z., Liu W., 2021. CaO/Ca(OH)2 heat storage performance of hollow nanostructured CaO-based material from Ca-looping cycles for CO2 capture. Fuel Process. Technol., 217, 106834. DOI: 10.1016/j.fuproc.2021.106834.
  • 13. Bizon K., Tabis B., 2016. Adsorption with chemical reaction in porous catalyst pellets under alternate concentration fields. Uniform temperature case. Chem. Process Eng., 37, 473–484. DOI: 10.1515/cpe-2016-0039.
  • 14. Blamey J., Paterson N.P.M., Dugwell D.R., Fennell P.S., 2010. Mechanism of particle breakage during reactivation of cao-based sorbents for CO2 capture. Energy Fuels, 24, 4605–4616. DOI: 10.1021/ef100476d.
  • 15. Blomen E., Hendriks C., Neele F., 2009. Capture technologies: Improvements and promising developments. Energy Procedia, 1, 1505–1512. DOI: 10.1016/j.egypro.2009.01.197.
  • 16. Broda M., Kierzkowska A.M., Muller C.R., 2012. Application of the sol-gel technique to develop synthetic calciumbased sorbents with excellent carbon dioxide capture characteristics. ChemSusChem, 5, 411–418. DOI: 10.1002/cssc.201100468.
  • 17. Broda M., Kierzkowska A.M., Muller C.R., 2014. Development of highly effective CaO-based, MgO-stabilized CO2 sorbents via a scalable “one-pot” recrystallization technique. Adv. Funct. Mater., 24, 5753–5761. DOI: 10.1002/adfm.201400862.
  • 18. Bui M., Adjiman C.S., Bardow A., Anthony E.J., Boston A., Brown S., Fennell P.S., Fuss S., Galindo A., Hacket, L.A., Hallett J.P., Herzog H.J., Jackson G., Kemper J., Krevor S., Maitland G.C., Matuszewski M., Metcalfe I.S., Petit C., Puxty G., Reimer J., Reiner D.M., Rubin E.S., Scott S.A., Shah N., Smit B., Trusler J.P.M., Webley P., Wilcox J., Mac Dowell N., 2018. Carbon capture and storage (CCS): the way forward. Energy Environ. Sci., 11, 1062–1176. DOI: 10.1039/c7ee02342a.
  • 19. Champagne S., Lu D.Y., Symonds R.T., Macchi A., Anthony E.J., 2016. The effect of steam addition to the calciner in a calcium looping pilot plant. Powder Technol., 290, 114–123. DOI: 10.1016/j.powtec.2015.07.039.
  • 20. Chang M.-H., ChenW.-C., Huang C.-M., Liu,W.-H., Chou Y.-C., ChangW.-C., ChenW., Cheng J.-Y., Huang K.-E., Hsu H.-W., 2014. Design and experimental testing of a 1.9 MWth calcium looping pilot plant. Energy Procedia, 63, 2100–2108. DOI: 10.1016/j.egypro.2014.11.226.
  • 21. Chang M.-H., Huang C.-M., Liu W.-H., Chen W.-C., Cheng J.-Y., Chen W., Wen T.-W., Ouyang S., Shen C.-H., Hsu H.-W., 2013. Design and experimental investigation of calcium looping process for 3-kW𝑡ℎ and 1.9-MW𝑡ℎ facilities. Chem. Eng. Technol., 36, 1525–1532. DOI: 10.1002/ceat.201300081.
  • 22. Chang P.-H., Chang Y.-P., Chen, S.-Y., Yu C.-T., Chyou Y.-P., 2011. Ca-rich Ca-Al-oxide, high-temperaturestable sorbents prepared from hydrotalcite precursors: synthesis, characterization, and CO2 capture capacity. ChemSusChem, 4, 1844–1851. DOI: 10.1002/cssc.201100357.
  • 23. Chang R., Kim S., Lee S., Choi S., Kim M., Park Y., 2017. Calcium carbonate precipitation for CO2 storage and utilization: A review of the carbonate crystallization and polymorphism. Front. Energy Res., 5, 17. DOI: 10.3389/fenrg.2017.00017.
  • 24. Chen H., Zhang P., Duan Y., Zhao C., 2016a. CO2 capture of calcium based sorbents developed by sol–gel technique in the presence of steam. Chem. Eng. J., 295, 218–226. DOI: 10.1016/j.cej.2016.03.008.
  • 25. Chen H., Zhang P., Duan Y., Zhao C., 2016b. Reactivity enhancement of calcium based sorbents by doped with metal oxides through the sol–gel process. Appl. Energy, 162, 390–400. DOI: 10.1016/j.apenergy.2015.10.035.
  • 26. Chi C., Li Y., Zhang W., Wang Z., 2019. Synthesis of a hollow microtubular Ca/Al sorbent with high CO2 uptake by hard templating. Appl. Energy, 251, 113382. DOI: 10.1016/j.apenergy.2019.113382.
  • 27. Coppola A., Gais E., Mancino G., Montagnaro F., Scala F., Salatino P., 2017. Effect of steam on the performance of Ca-based sorbents in calcium looping processes. Powder Technol., 316, 578–584. DOI: 10.1016/j.powtec.2016.11.062.
  • 28. Creamer A.E., Gao B., 2016. Carbon-based adsorbents for postcombustion CO2 capture: A critical review. Environ. Sci. Technol., 50, 7276–7289. DOI: 10.1021/acs.est.6b00627.
  • 29. Cuellar-Franca R.M., Azapagic A., 2015. Carbon capture, storage and utilisation technologies:Acritical analysis and comparison of their life cycle environmental impacts. J. CO2 Util., 9, 82–102. DOI: 10.1016/j.jcou.2014.12.001.
  • 30. Czaplicka N., Konopacka-Łyskawa D., 2020. Utilization of gaseous carbon dioxide and industrial Ca-rich waste for calcium carbonate precipitation: A review. Energies, 13, 6239. DOI: 10.3390/en13236239. de Avila S.G., Logli M.A., Matos J.R., 2015. Kinetic study of the thermal decomposition of monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA) and methyldiethanolamine (MDEA). Int. J. Greenhouse Gas Control, 42, 666–671. DOI: 10.1016/j.ijggc.2015.10.001.
  • 31. Demessence A., D’Alessandro D.M., Foo M.L., Long J.R., 2009. Strong CO2 binding in a water-stable, triazolatebridged metal–organic framework functionalized with ethylenediamine. J. Am. Chem. Soc., 131, 8784–8786. DOI: 10.1021/ja903411w.
  • 32. Di Giuliano A., Gallucci K., Foscolo P.U., 2020. Determination of kinetic and diffusion parameters needed to predict the behavior of CaO-based CO2 sorbent and sorbent-catalyst materials. Ind. Eng. Chem. Res., 59, 6840–6854. DOI: 10.1021/acs.iecr.9b05383.
  • 33. Dong K., Sun R., Hochman G., 2017. Do natural gas and renewable energy consumption lead to less CO2 emission? Empirical evidence from a panel of BRICS countries. Energy, 141, 1466–1478. DOI: 10.1016/j.energy. 2017.11.092.
  • 34. Dou B., Wang C., Song Y., Chen H., Jiang B., Yang M., Xu Y., 2016. Solid sorbents for in-situ CO2 removal during sorption-enhanced steam reforming process: A review. Renewable Sustainable Energy Rev., 53, 536–546. DOI: 10.1016/j.rser.2015.08.068.
  • 35. Duelli G., Charitos A., Armbrust N., Dieter H., Scheffknecht G., 2016. Analysis of the calcium looping system behavior by implementing simple reactor and attrition models at a 10 kW th dual fluidized bed facility under
  • 36. continuous operation. Fuel, 169, 79–86. DOI: 10.1016/j.fuel.2015.11.070.
  • 37. Esmaeili Rad F., Abbasian J., Arastoopour H., 2021. Numerical simulation of CO2 adsorption in a fluidized bed using solid-supported amine sorbent. Can. J. Chem. Eng., 99, 1595–1606. DOI: 10.1002/cjce.24000.
  • 38. Fedunik-Hofman L., Bayon A., Donne S.W., 2019. Kinetics of solid-gas reactions and their application to carbonate looping systems. Energies, 12, 2981. DOI: 10.3390/en12152981.
  • 39. Florin N. H., Blamey J., Fennell P.S., 2010. Synthetic CaO-based sorbent for CO2 capture from large-point sources. Energy Fuels, 24, 4598–4604. DOI: 10.1021/ef100447c.
  • 40. Florin N.H., Harris A.T., 2009. Reactivity of CaO derived from nano-sized CaCO3 particles through multiple CO2 capture-and-release cycles. Chem. Eng. Sci., 64, 187–191. DOI: 10.1016/j.ces.2008.10.021.
  • 41. Gao N., Chen K., Quan C., 2020. Development of CaO-based adsorbents loaded on charcoal for CO2 capture at high temperature. Fuel, 260, 116411. DOI: 10.1016/j.fuel.2019.116411.
  • 42. Gao Y., Zhang Z., Wu J., Yi X., Zheng A., Umar A., O’Hare D., Wang Q., 2013. Comprehensive investigation of CO2 adsorption on Mg–Al–CO3 LDH-derived mixed metal oxides. J. Mater. Chem. A, 1, 12782–12790. DOI: 10.1039/c3ta13039h.
  • 43. Garcia-Labiano F., Abad A., de Diego L.F., Gayan P., Adanez J., 2002. Calcination of calcium-based sorbents at pressure in a broad range of CO2 concentrations. Chem. Eng. Sci., 57, 2381–2393. DOI: 10.1016/S0009-2509(02)00137-9.
  • 44. Goto K., Yogo K., Higashii T., 2013. A review of efficiency penalty in a coal-fired power plant with post-combustion CO2 capture. Appl. Energy, 111, 710–720. DOI: 10.1016/j.apenergy.2013.05.020.
  • 45. Granados-Pichardo A., Granados-Correa F., Sanchez-Mendieta V., Hernandez-Mendoza H., 2020. New CaO-based adsorbents prepared by solution combustion and high-energy ball-milling processes for CO2 adsorption: Textural and structural influences. Arab. J. Chem., 13, 171–183. DOI: 10.1016/j.arabjc.2017.03.005.
  • 46. Grasa G., Martinez I., Diego M.E., Abanades J.C., 2014. Determination of CaO carbonation kinetics under recarbonation conditions. Energy Fuels, 28, 4033–4042. DOI: 10.1021/ef500331t.
  • 47. Grasa G., Murillo R., Alonso M., Abanades J.A., 2009. Application of the random pore model to the carbonation cyclic reaction. AIChE J., 55, 1246–1255. DOI: 10.1002/aic.11746.
  • 48. Guo H., Feng J., ZhaoY.,Wang S.,MaX., 2017. Effect of micro-structure and oxygen vacancy on the stability of (Zr–Ce)-additive CaO-based sorbent in CO2 adsorption. J. CO2 Util., 19, 165–176. DOI: 10.1016/j.jcou.2017.03.015.
  • 49. Guo H., Kou X., Zhao Y., Wang S., Sun Q., Ma X., 2018. Effect of synergistic interaction between Ce and Mn on the CO2 capture of calcium-based sorbent: Textural properties, electron donation, and oxygen vacancy. Chem. Eng. J., 334, 237–246. DOI: 10.1016/j.cej.2017.09.198.
  • 50. Gupta H., Fan L.S., 2002. Carbonation-calcination cycle using high reactivity calcium oxide for carbon dioxide separation from flue gas. Ind. Eng. Chem. Res., 41, 4035–4042. DOI: 10.1021/ie010867l.
  • 51. Hanif A., Dasgupta S., Nanoti A., 2015. High temperature CO2 adsorption by mesoporous silica supported magnesium aluminum mixed oxide. Chem. Eng. J., 280, 703–710. DOI: 10.1016/j.cej.2015.06.018. Harlick P.J.E., Tezel F.H., 2004. An experimental adsorbent screening study for CO2 removal from N2. Microporous Mesoporous Mater., 76, 71–79. DOI: 10.1016/j.micromeso.2004.07.035.
  • 52. Hu Y., Liu W., Chen H., Zhou Z., Wang W., Sun J., Yang X., Li X., Xu M., 2016. Screening of inert solid supports for CaO-based sorbents for high temperature CO2 capture. Fuel, 181, 199–206. DOI: 10.1016/j.fuel.2016.04.138.
  • 53. Hu Y., Liu W., Sun J., Li M., Yang X., Zhang Y., Xu M., 2015. Incorporation of CaO into novel Nd2O3 inert solid support for high temperature CO2 capture. Chem. Eng. J., 273, 333–343. DOI: 10.1016/j.cej.2015.03.074.
  • 54. Huang C., Xu M., Huai X., Liu Z., 2021. Template-free synthesis of hollow CaO/Ca2 SiO4 nanoparticle as a cyclically stable high-capacity CO2 sorbent. ACS Sustain. Chem. Eng., 9, 2171–2179. DOI: 10.1021/acssuschemeng.0c07689.
  • 55. Huang L., Zhang Y., Gao W., Harada T., Qin Q., Zheng Q., Hatton T.A., Wang Q., 2017. Alkali carbonate molten salt coated calcium oxide with highly improved carbon dioxide capture capacity. Energy Technol., 5, 1328–1336. DOI: 10.1002/ente.201600628.
  • 56. Ishida M.,Wen C.Y., 1968. Effectiveness factors and instability in solid-gas reactions. Chem. Eng. Sci., 23, 125–137. DOI: 10.1016/0009-2509(68)87057-5.
  • 57. Jansen D., Gazzani M., Manzolini G., van Dijk E., Carbo M., 2015. Pre-combustion CO2 capture. Int. J. Greenhouse Gas Control, 40. DOI: 10.1016/j.ijggc.2015.05.028.
  • 58. Jiang L., Hu S., Syed-Hassan S.S.A., Wang Y., Shuai C., Su S., Su S., Liu C., Chi H., Xiang J., 2016. Performance and carbonation kinetics of modified CaO-based sorbents derived from different precursors in multiple CO2 capture cycles. Energy Fuels, 30, 9563–9571. DOI: 10.1021/acs.energyfuels.6b01368.
  • 59. Johnsen K., Ryu H.J., Grace J.R., Lim C.J., 2006. Sorption-enhanced steam reforming of methane in a fluidized bed reactor with dolomite as CO2-acceptor. Chem. Eng. Sci., 61, 1195–1202. DOI: 10.1016/j.ces.2005.08.022.
  • 60. Kanniche M., Gros-Bonnivard R., Jaud P., Valle-Marcos J., Amann J.-M., Bouallou C., 2010. Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture. Appl. Therm. Eng., 30, 53–62. DOI: 10.1016/j.applthermaleng.2009.05.005.
  • 61. Khatri R.A., Chuang S.S.C., Soong Y., Gray M., 2006. Thermal and chemical stability of regenerable solid amine sorbent for CO2 capture. Energy Fuels, 20, 1514–1520. DOI: 10.1021/ef050402y.
  • 62. Khoo H.H., Sharratt P.N., Bu J., Yeo T.Y., Borgna A., Highfield J.G., Bjorklof T.G., Zevenhoven R., 2011. Carbon capture and mineralization in singapore: Preliminary environmental impacts and costs via LCA. Ind. Eng. Chem. Res., 50, 11350–11357. DOI: 10.1021/ie200592h.
  • 63. Kremer J., Galloy A., Strohle J., Epple B., 2013. Continuous CO2 capture in a 1-MW𝑡ℎ carbonate looping pilot plant. Chem. Eng. Technol., 36, 1518–1524. DOI: 10.1002/ceat.201300084.
  • 64. Kuramochi T., Ramirez A., TurkenburgW., Faaij A., 2012. Comparative assessment of CO2 capture technologies for carbon-intensive industrial processes. Prog. Energy Combust. Sci., 38, 87–112. DOI: 10.1016/j.pecs.2011.05.001.
  • 65. Kurlov A., Armutlulu A., Donat F., Studart A.R., Muller C.R., 2020a. CaO-Based CO2 sorbents with a hierarchical porous structure made via microfluidic droplet templating. Ind. Eng. Chem. Res., 59, 7182–7188. DOI: 10.1021/acs.iecr.9b05996.
  • 66. Kurlov A., Kierzkowska A.M., Huthwelker T.,Abdala P.M., Muller C.R., 2020b.Na2CO3-modified CaO-based CO2 sorbents: The effects of structure and morphology on CO2 uptake. Phys. Chem. Chem. Phys., 22, 24697–24703. DOI: 10.1039/D0CP04410E.
  • 67. Lee D.K., 2004. An apparent kinetic model for the carbonation of calcium oxide by carbon dioxide. Chem. Eng. J., 100, 71–77. DOI: 10.1016/j.cej.2003.12.003.
  • 68. Lee S.C., Choi B.Y., Lee T.J., Ryu C.K., Ahn Y.S., Kim J.C., 2006. CO2 absorption and regeneration of alkali metal-based solid sorbents. Catal. Today, 111, 385–390. DOI: 10.1016/j.cattod.2005.10.051.
  • 69. Lee S.Y., Park S.J., 2013. Determination of the optimal pore size for improved CO2 adsorption in activated carbon fibers. J. Colloid Interface Sci., 389, 230–235. DOI: 10.1016/j.jcis.2012.09.018.
  • 70. Leperi K.T., Chung Y.G., You F., Snurr R.Q., 2019. Development of a general evaluation metric for rapid screening of adsorbent materials for postcombustion CO2 capture. ACS Sustainable Chem. Eng., 7, 11529–11539. DOI: 10.1021/acssuschemeng.9b01418.
  • 71. Leung D.Y.C., Caramanna G., Maroto-Valer M.M., 2014. An overview of current status of carbon dioxide capture and storage technologies. Renew. Sustain. Energy Rev., 39, 426–443. DOI: 10.1016/j.rser.2014.07.093.
  • 72. Li L., King D.L., Nie Z., Howard C., 2009. Magnesia-stabilized calcium oxide absorbents with improved durability for high temperature CO2 capture. Ind. Eng. Chem. Res., 48, 10604–10613. DOI: 10.1021/ie901166b.
  • 73. Li Z., Liu Y., Cai N., 2014. Understanding the enhancement effect of high-temperature steam on the carbonation reaction of CaO with CO2. Fuel, 127, 88–93. DOI: 10.1016/j.fuel.2013.06.040.
  • 74. Li Z., Sun H., Cai N., 2012. Rate equation theory for the carbonation reaction of CaO with CO2. Energy Fuels, 26, 4607–4616. DOI: 10.1021/ef300607z.
  • 75. Li Z.S., Cai N.S., 2007. Modeling of multiple cycles for sorption-enhanced steam methane reforming and sorbent regeneration in fixed bed reactor. Energy Fuels, 21, 2909–2918. DOI: 10.1021/ef070112c.
  • 76. Liu W., Dennis J.S., Sultan D.S., Redfern S.A.T., Scott S.A., 2012. An investigation of the kinetics of CO2 uptake by a synthetic calcium based sorbent. Chem. Eng. Sci., 69, 644–658. DOI: 10.1016/j.ces.2011.11.036.
  • 77. Liu W., Feng B., Wu Y., Wang G., Barry J., Diniz da Costa J.C., 2010. Synthesis of sintering-resistant sorbents for CO2 capture. Environ. Sci. Technol., 44, 3093–3097. DOI: 10.1021/es903436v.
  • 78. Lu H., Khan A., Pratsinis S.E., Smirniotis P.G., 2009. Flame-made durable doped-CaO nanosorbents for CO2 capture. Energy Fuels, 23, 1093–1100. DOI: 10.1021/ef8007882.
  • 79. Luis P., 2016. Use of monoethanolamine (MEA) forCO2 capture in a global scenario: Consequences and alternatives. Desalination, 380, 93–99. DOI: 10.1016/j.desal.2015.08.004.
  • 80. Luo C., Zheng Y., Zheng C., Yin J., Qin C., Feng B., 2013. Manufacture of calcium-based sorbents for high temperaturę cyclic CO2 capture via a sol–gel process. Int. J. Greenhouse Gas Control, 12, 193–199. DOI: 10.1016/j.ijggc. 2012.11.011.
  • 81. Manovic V., Wu Y., He I., Anthony E.J., 2012. Spray water reactivation/pelletization of spent CaO-based sorbent from calcium looping cycles. Environ. Sci. Technol., 46, 12720–12725. DOI: 10.1021/es303252j.
  • 82. Naeem M.A., Armutlulu A., Imtiaz Q., Donat F., Schaublin R., Kierzkowska A., Muller C.R., 2018. Optimization of the structural characteristics of CaO and its effective stabilization yield high-capacity CO2 sorbents. Nat. Commun., 9, 2408. DOI: 10.1038/s41467-018-04794-5.
  • 83. Nawar A., Ali M., Mahmood M., Anwar M., Khan Z.A., 2020. Effect of structural promoters on calcium based sorbents from waste derived sources. Mater. Today Commun., 24. DOI: 10.1016/j.mtcomm.2020.101075.
  • 84. Nityashree N., Manohara G.V., Maroto-Valer M.M., Garcia S., 2020. Advanced high-temperature CO2 sorbents with improved long-term cycling stability. ACS Appl. Mater. Interfaces, 12, 33765–33774. DOI: 10.1021/acsami.0c08652.
  • 85. Nouri S.M.M., Ale Ebrahim H., 2016. Kinetic study of CO2 reaction with CaO by a modified random pore model. Polish J. Chem. Technol., 18, 93–98. DOI: 10.1515/pjct-2016-0014.
  • 86. Pardakhti M., Jafari T., Tobin Z., Dutta B., Moharreri E., Shemshaki N.S., Suib S., Srivastava R., 2019. Trends in solid adsorbent materials development for CO2 capture. ACS Appl. Mater. Interfaces, 11, 34533–34559. DOI: 10.1021/acsami.9b08487.
  • 87. Park J., Yi K.B., 2012. Effects of preparation method on cyclic stability and CO2 absorption capacity of synthetic CaO–MgO absorbent for sorption-enhanced hydrogen production. Int. J. Hydrogen Energy, 37, 95–102. DOI: 10.1016/j.ijhydene.2011.09.093.
  • 88. Pecharaumporn P., Wongsakulphasatch S., Glinrun T., Maneedaeng A., Hassan Z., Assabumrungrat S., 2019. Synthetic CaO-based sorbent for high-temperature CO2 capture in sorption-enhanced hydrogen production. Int. J. Hydrogen Energy, 44, 20663–20677. DOI: 10.1016/j.ijhydene.2018.06.153.
  • 89. Pellegrini G., Strube R., Manfrida G., 2010. Comparative study of chemical absorbents in postcombustion CO2 capture. Energy, 35, 851–857. DOI: 10.1016/j.energy.2009.08.011.
  • 90. Perejon A., Romeo L.M., Lara Y., Lisbona P., Martinez A., Valverde J.M., 2016. The Calcium-Looping technology for CO2 capture: On the important roles of energy integration and sorbent behavior. Appl. Energy, 162, 787–807. DOI: 10.1016/j.apenergy.2015.10.121.
  • 91. Phromprasit J., Powell J., Assabumrungrat S., 2016. Metals (Mg, Sr and Al) modified CaO based sorbent for CO2 sorption/desorption stability in fixed bed reactor for high temperature application. Chem. Eng. J., 284, 1212–1223.DOI: 10.1016/j.cej.2015.09.038.
  • 92. Ping C., Feng B.-Q., Teng Y.-L., Chen H.-Q., Liu S.-L., Tai Y.-L., Liu H.-N., Dong B.-X., 2020. Acquiring an effective CaO-based CO2 sorbent and achieving selective methanation of CO2. RSC Adv., 10, 21509–21516. DOI: 10.1039/D0RA02495C.
  • 93. Puxty G., Rowland R., Attalla M., 2010. Comparison of the rate of CO2 absorption into aqueous ammonia and monoethanolamine. Chem. Eng. Sci., 65, 915–922. DOI: 10.1016/j.ces.2009.09.042.
  • 94. Radfarnia H.R., Iliuta M.C., 2013. Metal oxide-stabilized calcium oxide CO2 sorbent for multicycle operation. Chem. Eng. J., 232, 280–289. DOI: 10.1016/j.cej.2013.07.049.
  • 95. Radfarnia H.R., Sayari A., 2015. A highly efficient CaO-based CO2 sorbent prepared by a citrate-assisted sol–gel technique. Chem. Eng. J., 262, 913–920. DOI: 10.1016/j.cej.2014.09.074.
  • 96. Ridha F.N., Manovic V., Macchi A., Anthony M.A., Anthony E.J., 2013. Assessment of limestone treatment with organic acids for CO2 capture in Ca-looping cycles. Fuel Process. Technol., 116, 284–291. DOI: 10.1016/j.fuproc.2013.07.007.
  • 97. Robles J.O., Almaraz S.D.-L., Azzaro-Pantel C., 2018. Chapter 2 – Hydrogen supply chain design:Key technological components and sustainable assessment, In: Azzaro-Pantel C. (Ed.), Hydrogen supply chains. Design, deployment and operation. Academic Press, 37-79. DOI: 10.1016/B978-0-12-811197-0.00002-6.
  • 98. Salaudeen S.A., Acharya B., Dutta A., 2018. CaO-based CO2 sorbents: A review on screening, enhancement, cyclic stability, regeneration and kinetics modelling. J. CO2 Util., 23, 179–199. DOI: 10.1016/j.jcou.2017.11.012.
  • 99. Sanchez-Jimenez P.E., Perez-Maqueda L.A.,Valverde J.M., 2014.Nanosilica supported CaO:Aregenerable and mechanically hard CO2 sorbent at Ca-looping conditions. Appl. Energy, 118, 92–99. DOI: 10.1016/j.apenergy.2013.12.024.
  • 100. Satyapal S., Filburn T., Trela J., Strange J., 2001. Performance and properties of a solid amine sorbent for carbon dioxide removal in space life support applications. Energy Fuels, 15, 250–255. DOI: 10.1021/ef0002391.
  • 101. Shokrollahi Yancheshmeh M., Radfarnia H.R., Iliuta M.C., 2016. High temperature CO2 sorbents and their application for hydrogen production by sorption enhanced steam reforming process. Chem. Eng. J., 283, 420–444. DOI: 10.1016/j.cej.2015.06.060.
  • 102. Sornvichai A., Piemjaiswang R., Piumsomboon P., Chalermsinsuwan B., 2020. Computational fluid dynamic model of nonisothermal circulating fluidized bed riser for CO2 capture. Energy Rep., 6, Suppl. 9, 1512–1518. DOI: 10.1016/j.egyr.2020.10.062.
  • 103. Sreenivasulu B., Sreedhar I., Suresh P., Raghavan K.V., 2015. Development trends in porous adsorbents for carbon capture. Environ. Sci. Technol., 49, 12641–12661. DOI: 10.1021/acs.est.5b03149.
  • 104. Su Y., Han R., Gao J.,Wei S., Sun F., Zhao G., 2019. Novel method for regeneration/reactivation of spent dolomitebased sorbents from calcium looping cycles. Chem. Eng. J., 360, 148–156. DOI: 10.1016/j.cej.2018.11.095.
  • 105. Sun H.,Wu C., Shen B., Zhang X., Zhang Y., Huang J., 2018. Progress in the development and application of CaObased adsorbents forCO2 capture – a review. Mater. Today Sustain., 1–2, 1–27. DOI: 10.1016/j.mtsust.2018.08.001.
  • 106. Sun J.,WangW., Yang Y., Cheng S., Guo Y., Zhao C., LiuW., Lu P., 2020. Reactivation mode investigation of spent CaO-based sorbent subjected to CO2 looping cycles or sulfation. Fuel, 266, 117056. DOI: 10.1016/j.fuel.2020.117056.
  • 107. Sun P., Grace J.R., Lim C.J., Anthony E.J., 2008. A discrete-pore-size-distribution-based gas–solid model and its application to the CaO-CO2 reaction. Chem. Eng. Sci., 63, 57–70. DOI: 10.1016/j.ces.2007.08.054.
  • 108. Sun R., LiY., Liu H.,Wu S., Lu C., 2012. CO2 capture performance of calcium-based sorbent doped with manganese salts during calcium looping cycle. Appl. Energy, 89, 368–373. DOI: 10.1016/j.apenergy.2011.07.051.
  • 109. Szekely J., Evans J.W., 1971a. A structural model for gas-solid reactions with a moving boundary-II: The effect of grain size, porosity and temperature on the reaction of porous pellets. 26, 1901–1913. DOI: 10.1016/0009-2509(71)86033-5.
  • 110. Szekely J., Evans J.W., 1971b. Studies in gas-solid reactions: Part I. A structural model for the reaction of porous oxides with a reducing gas. Metall. Mater. Trans. B, 2, 1691–1698. DOI: 10.1007/BF02913895.
  • 111. Valverde J.M., Sanchez-Jimenez P.E., Perez-Maqueda L.A., 2014. Role of precalcination and regeneration conditions on postcombustion CO2 capture in the Ca-looping technology. Appl. Energy, 136, 347–356. DOI: 10.1016/j.apenergy.2014.09.052.
  • 112. Wang Q., Luo J., Zhong Z., Borgna A., 2011. CO2 capture by solid adsorbents and their applications: current status and new trends. Energy Environ. Sci., 4, 42–55. DOI: 10.1039/C0EE00064G.
  • 113. Wang Q., Tay H.H., Guo Z., Chen L., Liu Y., Chang J., Zhong Z., Luo J., Borgna A., 2012. Morphology and composition controllable synthesis of Mg-Al-CO3 hydrotalcites by tuning the synthesis pH and the CO2 capture capacity. Appl. Clay Sci., 55, 18–26. DOI: 10.1016/j.clay.2011.07.024.
  • 114. Wang S., Li C.,Yan S., ZhaoY.,MaX., 2016.Adsorption ofCO2 on mixed oxides derived from Ca–Al–ClO4-layered double hydroxide. Energy Fuels, 30, 217–1222. DOI: 10.1021/acs.energyfuels.5b02506.
  • 115. Wang W., Liu W., Sun J., Hu Y., Yang Y.,Wen C., 2019. Reactivation of CaO-based sorbents via multi-acidification under N2 or oxy-fuel (with and without SO2o calcination conditions. Fuel, 244, 13–21. DOI: 10.1016/j.fuel.2019.01.115.
  • 116. Weisz P.B., Goodwin R.D., 1963. Combustion of carbonaceous deposits within porous catalyst particles I. Diffusioncontrolled kinetics. J. Catal., 2, 397–404. DOI: 10.1016/0021-9517(63)90104-0.
  • 117. Wood K.N., O’Hayre R., Pylypenko S., 2014. Recent progress on nitrogen/carbon structures designed for use in energy and sustainability applications. Energy Environ. Sci., 7, 1212–1249. DOI: 10.1039/c3ee44078h.
  • 118. Wu S.-C., Chang P.-H., Lin C.-Y., Peng C.-H., 2020. Multi-metals CaMgAl metal-organic framework as CaO-based sorbent to achieve highly CO2 capture capacity and cyclic performance. Materials, 13, 2220. DOI: 10.3390/ma13102220.
  • 119. Wu S.F., Lan P.Q., 2012. A kinetic model of nano-CaO reactions with CO2 in a sorption complex catalyst. AIChE J., 58, 1570–1577. DOI: 10.1002/aic.12675.
  • 120. Xu Y., Ding H., Luo C., Zheng Y., Xu Y., Li X., Zhang Z., Shen C., Zhang L., 2018. Porous spherical calcium-based sorbents prepared by a bamboo templating method for cyclic CO2 capture. Fuel, 219, 94–102. DOI: 10.1016/j.fuel.2018.01.029.
  • 121. Yoon H.J., Mun S., Lee K.B., 2021. Facile reactivation of used CaO-based CO2 sorbent via physical treatment: Critical relationship between particle size and CO2 sorption performance. Chem. Eng. J., 408, 127234. DOI: 10.1016/j.cej.2020.127234.
  • 122. Yu Y.S., Liu W.Q., An H., Yang F.S., Wang G.X., Feng B., Zhang Z.X., Rudolph V., 2012. Modeling of the carbonation behavior of a calcium based sorbent for CO2 capture. Int. J. Greenh. Gas Control, 10, 510–519. DOI: 10.1016/j.ijggc.2012.07.016.
  • 123. Zabielska K., Aleksandrzak T., Garbus E., 2018. Adorption equilibrium of carbon dioxide on zeolite 13X at high pressures. Chem. Process Eng., 39, 309–321. DOI: 10.24425/122952.
  • 124. Zdeb J., Howaniec N., Smolinski A., 2019. Utilization of carbon dioxide in coal gasification – An experimental study. Energies, 12, 140. DOI: 10.3390/en12010140.
  • 125. Zhang C., Sunarso J., Liu S., 2017. Designing CO2-resistant oxygen-selective mixed ionic–electronic conducting membranes: guidelines, recent advances, and forward directions. Chem. Soc. Rev., 46, 2941–3005. DOI: 10.1039/C6CS00841K.
  • 126. Zhang Y., Gong X., Chen X., Yin L., Zhang J., Liu W., 2018. Performance of synthetic CaO-based sorbent pellets for CO2 capture and kinetic analysis. Fuel, 232, 205–214. DOI: 10.1016/j.fuel.2018.05.143.
  • 127. Zhang Z., Pan S.-Y., Li H., Cai J., Olabi A.G., Anthony E.J., Manovic V., 2020. Recent advances in carbon dioxide utilization. Renew. Sustain. Energy Rev., 125, 109799. DOI: 10.1016/j.rser.2020.109799.
  • 128. Zhou Z., Xu P., Xie M., Cheng Z., Yuan W., 2013. Modeling of the carbonation kinetics of a synthetic CaO-based sorbent. Chem. Eng. Sci., 95, 283–290. DOI: 10.1016/j.ces.2013.03.047.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-713cf15b-a060-4a63-b568-c695939e54d2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.