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Abstract In this paper, we present resistivity-logging-measurement simulation with the
use of two types of borehole logging devices: those which operate with zero
frequency (direct current, DC) and those with higher frequencies (alternate
current, AC). We perform simulations of 3D resistivity measurements in devia-
ted wells, with a sharp angle between the borehole and formation layers. We
introduce a hierarchical adaptive genetic strategy hp − HGS interfaced with
an adaptive finite element method. We apply a strategy for the solution of the
inverse problem, where we identify the resistivities of the formation layers ba-
sed on a given measurement. We test the strategy on both direct and alternate
current cases.

Keywords resistivity logging simulations, adaptive finite element method, hierarchical
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1. Introduction

Simulations of resistivity measurements are widely used in geophysics where a qu-
antity of interest, voltage, is measured at a receiver electrode located in the logging
instrument. In 3D-resistivity-logging measurements, logging instruments have several
transmitter and receiver electrodes. Instruments move along the borehole axis and
measure voltage induced at receiver electrodes at diff erent positions. Voltage measu-
red at receivers is proportional to electrical conductivity. Thus, logging instruments
estimate properties (electrical conductivity) of the sub-surface material. The ultimate
goal is to describe hydrocarbon-bearing formations (with both oil and gas).

In this paper, we focus on two types of borehole logging devices: those which
operate with very low frequencies (close to 0), which are numerically modeled as zero-
frequency (direct current, DC), and those with higher frequencies (alternate current,
AC). We perform simulations of 3D resistivity measurements in deviated wells, with
an angle between the borehole and formation layers < 90 ◦ (see Fig. 1, 2).

(a) Straight well. (b) Deviated well.

Figure 1. Boreholes.

Exemplary process of resistivity measurements (with the usage of a logging tool)
is presented in Figure 1. The left panel illustrates formation layers that are perpendi-
cular to the borehole. The right panel illustrates a deviated well with formation layers
located under an angle with respect to the borehole. The logging tool used during
resistivity logging measurements is presented in Figure 2. The logging tool is shifted
along the borehole. The transmitter electrode generates electromagnetic waves which
are reflected by formation layers. The reflected waves are recorded at the receiver
electrodes. For each position of the logging tool, we record two values at two receiver
electrodes. We compute the approximation to the first derivative of the scalar poten-
tial using a finite diff erence scheme, and the two values recorded at receiver electrodes.
The result is an approximated value of the voltage. The value of the voltage is recor-
ded for each position of the logging tool. In the DC case, this data has real values; in
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Figure 2. Tool used for 3D AC resistivity logging measurements.

the AC case, this data has complex values. The recorded voltage monotonically de-
pends on the electrical conductivity of the sub-surface material. Thus, the formation
layers are represented by the electrical conductivities. The exemplary distribution of
conductivities in several formation layers is presented in the right panel in Figure 3.
The resulting sequence of values recorded for the AC case is presented in the middle
and right panels in Figure 3. There are 3 logging curves which correspond to the
three assumed situations, where formation layers are perpendicular to the borehole
(0 degrees case), and the deviated well case (either 30 or 60 degrees).

There are several numerical simulation methods developed to improve the in-
terpretation of results obtained with resistivity measurements, and thus, to better
quantify and determine existing subsurface materials and increase hydrocarbon reco-
very (i.e., [19, 25, 8, 12, 5, 23, 24, 3]). A second group of methods can be utilized to
invert well-log measurements [1, 2, 11].

A combination of a numerical method based on a Fourier series expansion in
a non-orthogonal system of coordinates with a 2D self-adaptive hp goal-oriented Fi-
nite Element (FE) method [14, 16, 17, 15] was described in [13, 18]. This Fourier-
Finite-Element method was formulated and applied to direct and alternating cur-
rent resistivity logging problems, and it enabled fast and accurate simulations of
previously-unsolved EM simulation problems in deviated wells.

In this paper, we consider two types of problems. First, we focus on the forward
problem, which consists of finding the voltage for a sequence of transmitter posi-
tions and receiver electrodes given the known conductivities of formation layers. By
solving the forward problem for consecutive positions of the logging tool, we genera-
te a sequence of points (either real- or complex-valued, for DC or AC formulations
respectively), ultimately forming a logging curve. Second, we focus on the inverse
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Figure 3. Resistivities of formation layers generating the complex logging curve.

problem of global optimization where, for a given reference logging curve, we search
for conductivities of the formation layers that will result in a similar logging curve.

2. Forward problem

Input for the forward problem are the locations of the formation layers, the geometry
of the logging tool, the conductivities of formation layers, and the angle between the
borehole and the formation layers. Input from the forward problem is a sequence of
points generated by using computer simulations. Actually, in the forward problem,
we solve a sequence of finite element method problems which differ by location of the
transmitter and receiver electrodes (compare Figure 5).

2.1. Formulation of 3D DC the problem

At direct current (DC, f = 0), the electromagnetic phenomena governed by Maxwell’s
equations reduces to the so-called conductive media equation

∇ · (σ∇u) = −∇ · Jimp , (1)

where σ > 0 is the conductivity tensor, Jimp represents the prescribed, impressed
electric current source, and u is the scalar electric potential such that E = −∇u. The
J imp is non-zero at transmitter electrodes, and its position changes for each location
of the transmitter electrodes.
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By multiplying equation (1) by test function v ∈ H1
0 (Ω ) = { u ∈ H1(Ω ) : u| Γ D =

0} , and by integrating by parts over the domain Ω , which is a skewed cylinder with 0
Dirichlet boundary condition (BC), we obtain the following variational formulation:

{
Find u ∈ H1

0 (Ω ) such that:

〈 ∇ v , σ ∇ u〉 L2(Ω ) =
〈
v , ∇ · Jimp〉

L2(Ω ) ∀ v ∈ H1
0 (Ω ) ,

(2)

Ω ⊂ R3 is assumed to be a simple connected, bounded domain with the Lipshitz
boundary (see [7, 6, 9] for detailed mathematic description). In our case Ω is a 3D
skewed cylinder surrounding the borehole (see Figures 4, 5).

Thus, the input to our DC forward problem is the geometry of the domain, the
angle between formation layers and the borehole, the location of formation layers
forming the cylinder Ω , skewed for the case of deviated well, the geometry of the
logging tool, the locations of the transmitter and receiver electrodes, as well as the
conductivities of formation layers. The Jimp represents the transmitter electrodes (it
is non-zero over a small part of the domain representing the transmitter electrodes).

We solve a sequence of fully 3D problems, which diff er by the location of the
transmitter and receiver electrodes. From the solution of each problem, we extract
the values of the scalar potential at two receiver electrodes and compute the appro-
ximation to the voltage by taking the finite diff erence between the two values. The
solution to the forward problem is the logging curve obtained by solving the forward
problem (2) for consecutive positions of the logging tool. Each point from the logging
corresponds to a single position of the receiver electrodes.

Figure 4. A cross section showing the 3D geometry of a logging instrument in a vertical well
penetrating dipping layers. x = (x1, x2, x3) represents the Cartesian system of coordinates,
and ζ = ( ζ 1, ζ 2, ζ 3) represents the new non-orthogonal system of coordinates. The new system
of coordinates is diff erent in each of the three sub-domains. Sub-domain I corresponds to
the logging instrument, sub-domain II to the borehole, and sub-domain III to the formation.
The new system of coordinates is globally continuous, as indicated by the parameterization.
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Figure 5. The forward problem consists in computations of the logging curves with assumed
resistivities of the borehole and five formation layers.

2.2. Formulation of 3D AC problem

We start from the time-harmonic Maxwell’s equations with the angular frequency
f 6= 0





curlH = (σ + ifε)E + Jimp (Ampère’s law)
curlE = −ifµH−Mimp (Faraday’s law)
div(εE) = χ (Gauss’s law of electricity)
div(µH) = 0 (Gauss’s law of magnetism),

(3)

here H is the magnetic field intensity, E is the electric field, Jimp is the density of
electic current impressed on transmitter antennas, Mimp is a density of an impres-
sed magnetic current, χ is the electric charge distribution and ε, µ, σ stand for the
permittivity, permeability, and electrical conductivity of the borehole and formation
layers. The geometry of the borehole, the logging tool, and the formation layers for
the AC formulation are summarized in Figure 6.

We are looking for solutions to (3) in the 3D skewed cylinder Ω ⊂ R3. We assume
zero Dirichlet boundary condition on the entire Γ = ∂Ω.

The weak variational formulation is considered in

H(curl; Ω) =
{
F ∈ L2(Ω;C3) : curlF ∈ L2(Ω;C3)

}
(4)
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endowed with an inner product

(E,F)H(curl;Ω) =
∫

Ω
curlE · curlFdx+

∫

Ω
E · Fdx (5)

where u · v = u1v1 + u2v2 + u3v3.
The weak form (the so called E-formulation) is obtained by dividing both sides of

Faraday’s law by 1
µ , multiplying them by curlF, integrating by parts over the domain

Ω and finally applying Ampére’s law: find E ∈ V such that
∫

Ω

1
µ

curlE · curlFdx−
∫

Ω
(f2ε− ifσ)E · F = −if

∫

Ω
Jimp · Fdx (6)

for every test field F ∈ V . For more details on the problem derivation, we refer to
[18].

Figure 6. The geometry of the borehole, logging tool, and formation layers for the AC
problem.

Thus, the input to our AC forward problem is the geometry of the domain, the
angle between formation layers and the borehole, the location of formation layers
forming the cylinder Ω, skewed for the case of a deviated well, the geometry of the
logging tool, the locations of the transmitter and receiver antennas, the frequency of
the tool f = 20Khz, and the conductivities σ of the formation layers. The electric
current Jimp is non-zero over the transmitter antennas.

We solve a sequence of fully-3D problems, which differ due to the location of
the transmitter and receiver antennas. From the solution of each problem, we extract
the complex values of the scalar potential at two receiver electrodes and compute
the approximation to the voltage by taking the finite difference between the two
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complex values. The solution to the forward problem is the logging curve obtained
by solving the forward problem (6) for the consecutive positions of the logging tool.
Each complex valued point from the logging corresponds to a single position of the
receiver electrodes.

2.3. Non-orthogonal system of coordinates

The direct problem is formulated for a 3D skewed cylinder; therefore, we perform
a change of variables from Cartesian to non-orthogonal system of coordinates (see
Fig. 4). First, we consider the union of three (possibly rotated) cylindrical systems
of coordinates defined over sub-domains I, II, and III, respectively, as illustrated in
Fig. 4. The change of coordinates ζ = (ζ1, ζ2, ζ3) = ψ(x) is globally continuous and
with positive Jacobian J , therefore suitable for Finite Element computations.

In addition, we observe that J , as a function of ζ2, can be represented as a li-
near combination of functions 1, sin ζ2, and cos ζ2 because the change of coordinates
is composed of rotations of the cylindrical system of coordinates. It is easy to see
that the corresponding metric G = JTJ (as a function of ζ2) can be represented in
terms of the following five Fourier basis functions: 1, cos ζ2, sin ζ2, cos2 ζ2, and sin2 ζ2.
Since material properties for the geometry described in Fig. 4 (deviated wells) are
constant with respect to the new quasi-azimuthal direction ζ2, and the metric can
be represented exactly with only five Fourier modes, we conclude that, when using
a 1D Fourier series expansion in terms of ζ2, the corresponding stiffness matrix be-
comes penta-diagonal (as opposed to a dense matrix) with respect to ζ2, leading to
a dramatic reduction on the computational complexity. For details, see [13].

2.4. Self-adaptive goal-oriented hp finite element method

The forward problem has been solved with self-adaptive, goal-oriented hp finite-
element method (hp-FEM). The algorithm starts with an initial mesh, called the
coarse mesh and solves the weak problem (either (2) or (6) for DC or AC, respective-
ly). The mesh is then globally hp-refined, each element is broken into four elements,
and the polynomial order of approximation is increased by one. The resulting mesh
is called the fine mesh.

The weak problem is solved again over the fine mesh. The algorithm considers
different refinement strategies for each finite element from the coarse mesh. The cor-
responding local relative error estimations are obtained by projecting the fine mesh
solution into the proposed local refinement and comparing the error between the
refined and coarse element.

The goal-oriented algorithm incorporated the error estimators aiming to minimize
the error at the receiver antenna. For more details on the algorithm, we refer to [15].
The optimal refinements are selected and executed locally for each finite element
from the coarse mesh. The resulting optimal mesh becomes the coarse mesh for the
next iteration. The iterations are repeated until the required accuracy at the receiver
antennas is reached.
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3. Inverse problem

For a given reference logging curve, the geometry of formation layers and the resi-
stivity field ω = 1

σ of the borehole and top and bottom formations, assuming the
constant resistivity in each layer, we search in the DC case for a discrete function
ω = (ω0, ω1, ω2) (see Figure 7). The inverse problem will be formulated as a global-
optimization one. We are looking for each global minimizer ω̂ ∈ D ⊂ R3 such that the
corresponding computed logging curve is closest to the reference one among all logging
curves associated with ω ∈ D, where D stands for the set of admissible resistivities.

The reference logging curve is usually obtained from field measurements. For
testing purposes, we compute this curve for the 60 degrees deviated well by using
a self-adaptive goal oriented hp-FEM algorithm with high accuracy 10−5. There are:
a borehole with resistivity 0.1Ω·m, sand with resistivity 100Ω·m, shale with resistivity
5Ω·m, oil with resistivity 20Ω·m, water with resistivity 1Ω·m and rock with resistivity
1000Ω ·m, which makes five layers as in Figure 7.

In the case of AC, measurements are much more complex; therefore, the problem
was simplified to two parameters: ω = (ω0, ρ1). Global minimizers are of form ω̂ ∈
D ⊂ R2. Resistivity of the mandrel equals 10−6Ω ·m, resistivity of the borehole equals
0.1Ω ·m and there are four formation layers: sand with resistivity 100Ω ·m, water with
resistivity 1Ω ·m, rock with resistivity 104Ω ·m and sand with resistivity 100Ω ·m as
in Figure 6.

Figure 7. The inverse problem is to find resistivities of formation layers from a given logging
curve. Three layers are sought in DC case.
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4. Strategy

4.1. Hierarchic Genetic Strategy

Hierarchic Genetic Strategy (HGS) produces a tree-structured set of concurrent evo-
lutionary processes (see Figure 8). The strategy was introduced by Kołodziej and
Schaefer in [21]. The structure of the tree changes dynamically and its depth is bo-
unded by m < +∞. We will focus on the case in which each evolutionary process is
governed by the Simple Genetic Algorithm [22] with proportional selection, one-point
crossover and binary mutation with Bernoulli distribution.

Figure 8. HGS tree and corresponding coding meshes.

HGS starts with a single root deme (population) which is a first order process.
Root performs a chaotic search with low accuracy. After a fixed number of genetic
epochs K called the metaepoch, the root-deme sprouts a child-deme in the promising
region of the evolutionary landscape surrounding the best-fitted individual distingu-
ished from the parental-deme (see left panel in Figure 9). Demes at the second level
(called branches) perform more local search with higher accuracy. Third-order demes
(leaves) are sprouted by branches similarly as branches are sprouted by root-demes
(see middle panel in Figure 9). Leaves perform local and most accurate search (see ri-
ght panel in Figure 9). In the second metaepoch, evolution is performed in all existing
populations and new demes are sprouted. The algorithm continues until the global
stop condition is reached.

HGS implements two mechanisms that prevent redundancy in the search: condi-
tional sprouting and branch reduction. The former allows new demes to be sprouted
only in regions which are not explored by sibling-demes (demes sprouted by the same
parent). The latter reduces (kills) demes of the same order that perform searches in
common landscape regions or in those regions already explored. A population is also
killed when its average fitness does not change in several consecutive epochs.
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Figure 9. Left panel: root population (red) sprouting second level population (green). Middle
panel: second level population (green) sprouting leaf population (pink). Right panel: leaf

population (pink) performing local search.

To encode points from domain D, we use a binary affi ne encoding [10]. Codes
represent a set of identified parameters. Each code is assigned a fitness value - a misfit
for a coded point. Fitness function is defined at each level separately (its accuracy
depends on the level in the tree).

Diff erent search accuracies are obtained by various encoding precisions and by
changing the length of binary genotypes in demes of diff erent orders. The root uti-
lizes the shortest genotypes, while leaves utilize the longest ones. To obtain search-
coherency for demes at diff erent levels, a hierarchical-nested encoding is used. First,
the densest mesh of phenotypes in D is defined for demes at the m-th level. After-
wards, the meshes for lower order demes are recursively defined by selecting nodes
from the previous ones. The maximum diameter of the mesh δ j associated with demes
of the order j determines the search accuracy at j-th level of the HGS tree (see Figure
8). Defined mesh parameters satisfy δ m < . . . < δ 1.

In order to solve the particular class of inverse parametric problems, HGS may
be coupled with the hp adaptive goal– oriented FEM algorithm (see [4]). This strategy,
called hp-HGS, consists of the estimation of the fitness value of each individual with
the required accuracy depending on the level of the HGS tree. Direct problems at
the root level are solved with the lowest accuracy and at leaf level – with the highest
accuracy. Each problem solved by the hp-FEM algorithm consists of finding a logging
curve for a particular set of parameters of formation layers with a given accuracy.

5. Experiments

5.1. 3D DC resistivity logging measurements simulations

We performed a simulation of the 3D DC borehole resistivity measurement problem
using hp-HGS method with 3 levels. Parameters of the simulation are presented in
Table 1. Sizes of populations were selected to balance the time of evaluating a single
solution with search capabilities of a population. Code length for a single parameter
was 15 on the first level, 21 on the second level, and 27 in the leaves.

The fitness value of each candidate solution ω (resistivity vector) was evaluated as
the Euclidean norm of the diff erence between discrete representations of the reference
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Table 1
Parameters of the simulation in the DC case.

level 1 level 2 level 3

Population size 12 6 4
Code length 45 63 81
Mutation rate 0.1 0.01 0.001
Crossing rate 0.5 0.5 0.5
Accuracy 0.1 0.01 0.001

logging curve calculated with high accuracy and the logging curve computed by the
self-adaptive goal-oriented hp–FEM algorithm for ω with accuracy depending on the
level in HGS tree.

The accuracy (see last row in Table 1) corresponds to the maximum relative error
decrement in the single hp-FEM step (see e.g. [20]) applied for solving direct problems
at the particular HGS level.

Experiments were performed using the Linux cluster environment. The computa-
tion was stopped when the best leaf individual fitness was less than or equal to 0.10,
which took 6 metaepochs.

Figure 10. Convergence of ω0, ω1 and ω2 in DC case. Different colors represent individuals
created in consecutive metaepochs.

Simulation results are presented in Figure 10. Figure 10 illustrates how the con-
secutive metaepochs concentrate closer and closer to the solution of the problem.
Actually, the metaepochs converge to the left bottom border of the search domain,
where ω0 ≈ 1, ω1 ≈ 5 and ω2 is within a range of ≈ (20, 50).
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Figure 11. Found solutions for ω0 and ω1 in AC case. Black points represent root individuals
and red represent leaf individuals.

The exemplary solution from the last metaepoch with the lowest fitness value of
0.10 was ω0 = 0.995, ω1 = 3.605 and ω2 = 44.166. Another solution with fitness value
0.2 was ω0 = 0.789, ω1 = 3.578 and ω2 = 19.166.

Results show that the fitness function is irregular in the neighborhood of the glo-
bal minimum, and that the problem is more sensitive to ω0 than to other parameters.
In other words, when we change the resistivity of the central layer within the range,
the resulting logging curves will have similar shapes.

5.2. 3D AC resistivity logging measurements

We use data obtained from the logging tool working with the frequency f = 20kHz.
Due to the very high computational cost of a single fitness evaluation in the 3D

AC borehole resistivity measurement problem, we reduced the number of levels in
HGS tree to 2 and modified the parameters of the simulation (see Table 2). Code
length for a single parameter was 15 on the first level and 20 in leaves. Fitness values
of candidate solutions were calculated analogously to the DC case. Simulation results
are presented in Figure 11. The computation was stopped after 6 metaepochs.

Figure 11 differs from Figure 10 in the sense that colors do not correspond to
metaepochs. All of the points represent individuals from the final tree of populations.
The red points represents individuals found in the leaves of the tree. As we can see in
Figure 11, some leaf populations contain individuals with low fitness values. Again, the
algorithm was able to localize the ω0 parameter quite well; however, the ω1 parameter
varies within the best fitted individuals, which implies that changing the conductivity
of ω1 results in similar shape logging curves. Some examples of best fitted individuals
are ω0 = 1.12, ω1 = 74.89, fitness 0.006331 or ω0 = 1.03, ω1 = 10.40, fitness 0.006975.
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Table 2
Parameters of the simulation in the AC case.

level 1 level 2

Population size 6 4
Code length 30 40
Mutation rate 0.1 0.02
Crossing rate 0.5 0.5
Accuracy 10 1

Both DC and AC results show the potential power of hp-HGS in resistivity iden-
tification and, similar to the DC case, the irregularity of fitness in the neighborhood
of the global minimum.

6. Conclusions

In this paper, we presented hp-HGS hierarchical genetic search strategy combined
with hp-adaptive finite element method solver. The strategy was utilized to solve the
inverse problem related to the identification of formation layers based on borehole re-
sistivity logging measurements. The hp-HGS strategy was tested on two cases; 1) the
direct current case with zero frequency resistivity logging measurements tool and with
three unknown formation layers, and 2) the alternate current case with f = 20 kHz
resistivity logging tool and with two unknown formation layers. The calculation co-
nverged to the expected solutions in both cases. The 30 percent disagreement between
the inverse problem solution and the simulated measurements implies from the fact
that the measurements are not sensitive to small variations of resistivities of certa-
in formation layers. In other words, small changes in the resistivities of these layers
imply the same shape of the logging curve. In future work, we plan to utilize hybrid
stochastic / gradient strategies as well as perform measurements of the same forma-
tion layers with two different logging tools to eliminate inaccuracies in the numerical
solutions.
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