PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nanoparticles for water disinfection by photocatalysis : a review

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Photocatalysis is an efficient and ecological method of water and wastewater disinfection. During the process, various microorganisms are deactivated, including Gram-positive and Gram-negative bacteria, for example Escherichia coli, Staphylococcus aureus, Streptococcus pneumonia, and so on, fungi like Aspergillus niger, Fusarium graminearum, algea (Tetraselmis suecica, Amphidinium carterae, and so on) and viruses. Titanium dioxide (TiO2) is the most commonly used material due to its price and high oxidation efficiency; it is easy to modify using both physical and chemical methods, what allows for its wide use in industrial scale. Intensive research on novel photocatalysts (e.g. ZnO and carbon based photocatalysis like graphene, carbon nanotube, carbon nitride and others) has been carried out. The future development of nano-disinfection containing metal/metal oxides and carbon based nanoparticles should focus on: improving disinfection efficiency through different manufacturing strategies, proper clarification and understanding of the role and mechanism of interaction of the nano-material with the microorganisms, progress in scaling up the production of commercial nano-photocatalysts, determination of the extent of environmental release of nano-photocatalysts and their toxicity.
Rocznik
Strony
3--17
Opis fizyczny
Bibliogr. 131 poz., rys., tab.
Twórcy
  • Institute of Environmental Engineering Polish Academy of Sciences, Zabrze, Poland
Bibliografia
  • 1. Akasaka, T. & Watari, F. (2009). Capture of bacteria by flexible carbon nanotubes, Acta Biomater., 5, pp. 607-612. DOI: 10.1016/j.actbio.2008.08.014
  • 2. Akhavan, O. (2009). Lasting antibacterial activities of Ag-TiO2/Ag/a-TiO2 nanocomposite thin film photocatalysts under solar light irradiation, J. Colloid Interface Sci., 336, pp. 117-124. DOI: 10.1016/j.jcis.2009.03.018
  • 3. Akhavan, O. & Ghaderi, E. (2009). Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation, J. Phys.Chem. C, 113, pp. 20214-20220. DOI: 10.1021/jp906325q
  • 4. Akhavan, O., Abdolahad, M., Abdi, Y. & Mohajerzadeh, S. (2009). Synthesis of titania/carbon nanotube heterojunction arrays for photoinactivation of E. coli in visible light irradiation, Carbon, 47, pp. 3280-3287. DOI/10.1016/j.carbon.2009.07.046
  • 5. Anis, S.F., Hashaikeh, R. & Hilal, N. (2019). Functional materials in desalination: A review, Desalination, 468, 114077. DOI: 10.1016/j.desal.2019.114077
  • 6. Amin, M.T., Alazba, A.A. & Manzoor, U. (2014). A review of removal of pollutants from water/wastewater using different types of nanomaterials, Advances in Materials Science and Engineering, Article ID 825910, 24 pages. DOI: 10.1155/2014/825910
  • 7. Anjum, M., Miandad, R., Waqas, M., Gehany, F. & Barakat, M.A. (2019). Remediation of wastewater using various nanomaterials, Arabian Journal of Chemistry, 12, pp. 4897-4919. DOI: 10.1016/j.arabjc.2016.10.004
  • 8. Bagchi, D., Bagchi, M., Hassoun, E. & Stohs, S. (1993). Detection of paraquat-induced in vivo lipid peroxidation by gas chromatography/mass spectrometry and high-pressure liquid chromatography, J. Anal. Toxicol., 17, pp. 411-414. DOI: 10.1093/jat/17.7.411
  • 9. Bai, W., Krishna, V., Wang, J., Moudgil, B. & Koopman, B. (2012). Enhancement of nano titanium dioxide photocatalysis in transparent coatings by polyhydroxy fullerene, Appl. Catal. B., Environ., 125, pp. 128-135. DOI: 10.1016/j.apcatb.2012.05.026
  • 10. Belapurkar, A.D., Sherkhane, P. & Kale, S.P. (2006). Disinfection of drinking water using photocatalytic technique, Curr. Sci., 91, pp. 73-76. http://www.jstor.org/stable/24094178
  • 11. Belver, C., Bedia, J., Gómez-Avilés, A., Peñas-Garzón, M. & Rodriguez, J.J. (2019). Semiconductor Photocatalysis for Water Purification, In: Editor(s): Sabu Thomas, Daniel Pasquini, Shao-Yuan Leu, Deepu A. Gopakumar, Micro and Nano Technologies, Nanoscale Materials in Water Purification, Chapter 22, Elsevier, (pp. 581-651). DOI: 10.1016/C2017-0-00435-4
  • 12. Bhadra, P., Mitra, M.K., Das, G.C., Dey, R. & Mukherjee, S. (2011). Interaction of chitosan capped ZnO nanorods with Escherichia coli, Mater. Sci. Engineer. C, 31(5), pp. 929-937. DOI: 10.1016/j.msec.2011.02.015
  • 13. Bing, W., Chen, Z., Sun, H., Shi, P., Gao, N., Ren, J. & Qu, X. (2015). Visible-light-driven enhanced antibacterial and bio film elimination activity of graphitic carbon nitride by embedded Ag nanoparticles, Nano Res., 8, pp. 1648-1658. DOI: 10.1007/s12274-014-0654-1
  • 14. Blanco-Galvez, J., Fernández-Ibáñnez, S. & Malato-Rodriguez, J. (2007). Solar photocatalytic detoxification and disinfection of water: recent overviews, J. Sol. Energy Eng., 129, pp. 4-15. DOI: 10.1115/1.2390948
  • 15. Bodzek, M. & Konieczny, K. (2011). Membrane techniques in the removal of inorganic anionic micro-pollutants from water environment-state of the art, Archives of Environmental Protection, 37(2), pp. 15-29.
  • 16. Bodzek, M. & Rajca, M. (2012). Photocatalysis in the treatment and disinfection of water. Pt 1: Theoretical backgrounds, Ecol. Chem. Eng. S, 19, pp. 489-512. DOI: 10.2478/v10216-011-0036-5
  • 17. Bodzek, M. (2019). Membrane separation techniques - removal of inorganic and organic admixtures and impurities from water environment - review, Archives of Environmental Protection, 45(4), pp. 4-19. DOI: 10.24425/aep.2019.130237
  • 18. Bodzek, M., Konieczny, K. & Rajca, M. (2019). Membranes in water and wastewater disinfection - review, Archives of Environmental Protection, 45(1), pp. 3-18. DOI: 10.24425/aep.2019.126419
  • 19. Bodzek, M., Konieczny, K. & Kwiecińska-Mydlak, A. (2021) Nano-photocatalysis in water and wastewater treatment. Desalination and Water Treat., 243, pp. 51-74. DOI: 10.5004/dwt.2021.27867.
  • 20. Bogdan, J., Szczawiński, J., Zarzyńska, J. & Pławińska-Czarnak, J. (2014). Mechanizmy inaktywacji bakterii na powierzchniach fotokatalitycznych, (Mechanisms of bacterial inactivation on photocatalytic surfaces), Med. Weter., 70(11), pp. 657-662. (in Polish)
  • 21. Bora, T. & Dutta, J. (2014). Applications of Nanotechnology in Wastewater Treatment - A Review, Journal of Nanoscience and Nanotechnology, 14, pp. 613-626. DOI: 10.1166/jnn.2014.8898
  • 22. Brady-Estévez, A.S., Nguyen, T.H., Gutierrez, L. & Elimelech, M. (2010). Impact of solution chemistry on viral removal by a single walled carbon nanotube filter, Water Res., 44, pp. 3773-3780. DOI: 10.1016/j.watres.2010.04.023
  • 23. Byrne, C., Subramanianc, G. & Suresh, C.P. (2018). Recent advances in photocatalysis for environmental applications, Journal of Environmental Chemical Engineering, 6, pp. 3531-3555. DOI: 10.1016/j.jece.2017.07.080
  • 24. Cao, B., Cao, S., Dong, P., Gao, J. & Wang, J. (2013). High antibacterial activity of ultrafine TiO2/graphene sheets nanocomposites under visible light irradiation, Mater. Lett., 93, pp. 349-352. DOI: 10.1016/j.matlet.2012.11.136
  • 25. Chen, Y. & Liu, K. (2017). Fabrication of magnetically recyclable Ce/N co-doped TiO2/NiFe2O4/diatomite ternary hybrid: improved photocatalytic efficiency under visible light irradiation, J. Alloys Compd., 697, pp. 161-173. DOI: 10.1016/j.jallcom.2016.12.153
  • 26. Chong, M.N., Jin, B., Chow, C.W.K. & Saint, C. (2010). Recent developments in photocatalytic water treatment technology: A review, Water Res., 44, pp. 2997-3027. DOI: 10.1016/j.watres.2010.02.039
  • 27. Collivignarelli, M.C., Abbà, A., Benigna, I. Sorlini, S. & Torretta, V. (2018). Overview of the main disinfection processes for wastewater and drinking water treatment plants, Sustainability, 10, 86. DOI: 10.3390/su1001008
  • 28. Dalrymple, O.K., Stefanakos, E., Trotz, M.A. & Goswami, D.Y. (2010). A review of the mechanisms and modeling of photocatalytic disinfection, Applied Catalysis B: Environmental, 98, pp. 27-38. DOI: 10.1016/j.apcatb.2010.05.001
  • 29. Danwittayakul, S., Songngam, S. & Sukkasi, S. (2020). Enhanced solar water disinfection using ZnO supported photocatalysts, Environmental Technology, 41(3), pp. 349-356. DOI: 10.1080/09593330.2018.1498921
  • 30. Das, S., Sinha, S., Suar, M., Yun, S.I., Mishra, A., Suraj, K. & Tripathy, K. (2015). Solar-photocatalytic disinfection of Vibrio cholerae by using Ag@ZnO core-shell structure nanocomposites, Journal of Photochemistry and Photobiology B, Biology, 142, pp. 68-76. DOI: 10.1016/j.jphotobiol.2014.10.021
  • 31. Davididou, K., Hale, E., Lane, N., Chatzisymeon, E., Pichavant, A. & Hochepied, J.F. (2017). Photocatalytic treatment of saccharin and bisphenol-A in the presence of TiO2 nanocomposites tuned by Sn (IV), Catal. Today, 287, pp. 3-9. DOI: 10.1016/j.cattod.2017.01.038
  • 32. Desai, V.S. & Kowshik, M. (2009). Antimicrobial activity of titanium dioxide nanoparticles synthesized by sol-gel technique, Res. J. Microbiol., 4, pp. 97-103. DOI: 10.3923/jm.2009.97.103
  • 33. Dimapilis, E.A.S., Hsu, C.S., Mendoza, R.M.O. & Lu, M.C. (2018). Zinc oxide nanoparticles for water disinfection, Sustainable Environment Research, 28, pp. 47-56. DOI: 10.1016/j.serj.2017.10.001
  • 34. Doong, R.A. & Liao, C.Y. (2017). Enhanced photocatalytic activity of Cu-deposited N-TiO2/titanate nanotubes under UV and visible light irradiations, Sep. Purif. Technol., 179, pp. 403-411. DOI: 10.1016/j.seppur.2017.02.028
  • 35. El Saeed, A.M., El- Fattah, M.A. & Azzam, A.M. (2015). Synthesis of ZnO nanoparticles and studying its influence on the antimicrobial, anticorrosion and mechanical behavior of polyurethane composite for surface coating, Dyes Pigments, 121, pp. 282-289. DOI: 10.1016/j.dyepig.2015.05.037
  • 36. Elkady, M.F., Shokry, H.H., Hafez, E.E. & Fouad, A. (2015). Construction of zinc oxide into different morphological structures to be utilized as antimicrobial agent against multidrug resistant bacteria, Bioinorg, Chem, Appl., 2015, pp. 1-20. DOI: 10.1155/2015/536854
  • 37. Elmi, F., Alinezhad, H., Moulana, Z., Salehian, F., Tavakkoli, S.M. & Asgharpour, F. (2014). The use of antibacterial activity of ZnO nanoparticles in the treatment of municipal wastewater, Water Sci. Technol., 70, pp. 763-770. DOI: 10.2166/wst.2014.232
  • 38. Eskandari, M., Haghighi, N., Ahmadi, V., Haghighi, F. & Mohammadi, S.R. (2011). Growth and investigation of antifungal properties of ZnO nanorod arrays on the glass, Physica B, 406(1), pp. 112-114, DOI: 10.1016/j.physb.2010.10.035
  • 39. Etacheri, V., Michlits, G., Seery, M.K., Hinder, S.J. & Pillai, S.C. (2013). A highly efficient TiO2-xCx nano-heterojunction photocatalyst for visible light induced antibacterial applications, ACS Appl. Mater. Interfaces, 5, pp. 1663-1672. DOI: 10.1021/am302676a
  • 40. Etacheri, V., Seery, M.K., Hinder, S.J. & Pillai, S.C. (2010). Highly visible light active TiO2-xNx heterojunction photocatalysts, Chem. Mater., 22, pp. 3843-3853. DOI: 10.1021/cm903260f
  • 41. Fagan, R., McCormack, D.E., Dionysiou, D.D. & Pillai, S.C. (2016). A review of solar and visible light active TiO2 photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern, Mater. Sci. Semicond. Process, 42, pp. 2-14. DOI: 10.1016/j.mssp.2015.07.052
  • 42. Feng, L. & Astruc, D. (2020). Nanocatalysts and other nanomaterials for water remediation from organic pollutants, Coordination Chemistry Reviews, 408, 213180. DOI: 10.1016/j.ccr.2020.213180.
  • 43. Fernández-Ibáñez, P., Polo-López, M., Malato, S., Wadhwa, S., Hamilton, J., Dunlop, P., D’sa, R., Magee, E., O’shea, K. & Dionysiou D. (2015). Solar photocatalytic disinfection of water using titanium dioxide graphene composites, Chem. Eng. J., 261, pp. 36-44. DOI: 10.1016/j.cej.2014.06.089
  • 44. Fisher, L., Ostovapour, S., Kelly, P., Whitehead, K., Cooke, K., Storgårds, E. & Verran, J. (2014). Molybdenum doped titanium dioxide photocatalytic coatings for use as hygienic surfaces: the effect of soiling on antimicrobial activity, Biofouling, 30, pp. 911-919. DOI: 10.1080/08927014.2014.939959
  • 45. Friedmann, D., Mendive, C. & Bahnemann, D. (2010). TiO2 for water treatment: parameters affecting the kinetics and mechanisms of photocatalysis, Appl. Catal. B, 99, pp. 398-406. DOI: 10.1016/j.apcatb.2010.05.014
  • 46. Ganguly, P., Byrnea, C., Subramanianc, G. & Suresh, C.P. (2018). Antimicrobial activity of photocatalysts: Fundamentals, mechanisms, kinetics and recent advances, Applied Catalysis B: Environmental, 225, pp. 51-75. DOI: 10.1016/j.apcatb.2017.11.018
  • 47. Gao, P., Ng, K. & Sun, D.D. (2013a). Sulfonated graphene oxide-ZnO-Ag photocatalyst for fast photodegradation and disinfection under visible light, Journal of Hazardous Materials, 262, pp. 826-835. DOI: 10.1016/j.jhazmat.2013.09.055
  • 48. Gao, P., Liu, J., Sun, D.D. & Ng, W. (2013b). Graphene oxide-CdS composite with high photocatalytic degradation and disinfection activities under visible light irradiation, Journal of Hazardous Materials, 250, pp. 412-420. DOI: 10.1016/j.jhazmat.2013.02.003
  • 49. Gao, Y., Hu, M. & Mi, B. (2014). Membrane surface modification with TiO2-graphene oxide for enhanced photocatalytic performance, Journal of Membrane Science, 455, pp. 349-356. DOI: 10.1016/j.memsci.2014.01.011
  • 50. Garvey, M., Panaitescu, E., Menon, L., Byrne, C., Dervin, S., Hinder, S.J. & Pillai, S.C. (2016). Titania nanotube photocatalysts for effectively treating waterborne microbial pathogens, J. Catal., 344, pp. 631-639. DOI: 10.1016/j.jcat.2016.11.004
  • 51. Hao, R., Wang, G., Tang, H., Sun, L., Xu, C. & Han, D. (2016). Template-free preparation of macro/mesoporous g-C3N4/TiO2 Nanoparticles for water disinfection by photocatalysis: A review 15 heterojunction photocatalysts with enhanced visible light photocatalytic activity, Appl. Catal. B: Environ., 187, pp. 47-58. DOI: 10.1016/j.apcatb.2016.01.026
  • 52. He, L., Liu, Y, Mustapha, A. & Lin, M. (2011). Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum, Microbiol. Res., 166, pp. 207-215. DOI: 10.1016/j.micres.2010.03.003
  • 53. He, W., Kim, H.K., Wamer, W.G., Melka, D., Callahan. J.H. & Yin, J.J. (2013). Photogenerated charge carriers and reactive oxygen species in ZnO/Au hybrid nanostructures with enhanced photocatalytic and antibacterial activity, J. Am. Chem. Soc., 136, pp. 750-757. DOI: 10.1021/ja410800y
  • 54. Helali, S., Polo-López, M.I., Fernández-Ibáñez, P., Ohtani, B., Amano, F., Malato, S. & Guillard C. (2014). Solar photocatalysis: A green technology for E. coli contaminated water disinfection. Effect of concentration and different types of suspended catalyst, Journal of Photochemistry and Photobiology A: Chemistry, 276, pp. 31-40. DOI: 10.1016/j.jphotochem.2013.11.011
  • 55. Hu, C., Guo, J., Qu, J. & Hu, X. (2007). Photocatalytic degradation of pathogenic bacteria with AgI/TiO2 under visible light irradiation, Langmuir, 23, pp. 4982-4987. DOI: 10.1021/la063626x
  • 56. Huang, J., Ho, W. & Wang, X. (2014). Metal-free disinfection effects induced by graphitic carbon nitride polymers under visible light illumination, Chem. Commun., 50, pp. 4338-4340. DOI: 10.1039/C3CC48374F
  • 57. Jacoby, W.A., Maness, P.C., Wolfrum, E.J., Blake, D.M. & Fennell, J.A. (1998). Mineralization of bacterial cell mass on a photocatalytic surface in air, Environ. Sci. Technol., 32, pp. 2650-2653. DOI: 10.4236/ijcm.2013.49067.
  • 58. Jin, S.E., Jin, J.E., Hwang, W. & Hong, S.W. (2019). Photocatalytic antibacterial application of zinc oxide nanoparticles and self-assembled networks under dual UV irradiation for enhanced disinfection, International Journal of Nanomedicine, 14, pp. 1737-1751. DOI: 10.2147/IJN.S192277
  • 59. Jones, N., Ray, B., Ranjit, K.T. & Manna, A.C. (2008). Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms, FEMS Microbiol Lett., 279, pp. 71-76. DOI: 10.1111/j.1574-6968.2007.01012.x
  • 60. Kang, S., Huang, W., Zhang, L., He, M., Xu, S., Sun, D. & Jiang, X. (2018). Moderate bacterial etching allows scalable and clean delamination of g-C3N4 with enriched unpaired electrons for highly improved photocatalytic water disinfection, Appl. Mater. Interfaces, 10, pp. 13796-13804. DOI: 10.1021/acsami.8b00007
  • 61. Kang, S., Mauter, M.S. & Elimelech, M. (2009). Microbial cytotoxicity of carbon-based nanomaterials: implications for river water and wastewater effluent, Environ. Sci. Technol., 43, pp. 2648-2653. DOI: 10.1021/es8031506
  • 62. Kikuchi, Y., Sunada, K., Iyoda, T., Hashimoto, K. & Fujishima, A. (1997). Photocatalytic bactericidal effect of TiO2 thin films: dynamic view of the active oxygen species responsible for the effect, J. Photochem, Photobiol. A: Chem., 106, pp. 51-56. DOI: 10.1016/S1010-6030(97)00038-5
  • 63. Koli, V.B., Delekar, S.D. & Pawar, S.H. (2016a). Photoinactivation of bacteria by using Fe-doped TiO2-MWCNTs nanocomposites, J Mater Sci., Mater Med., 27, 177. DOI: 10.1007/s10856-016-5788-0
  • 64. Koli, V.B., Dhodamani, A.G., Raut, A.V., Thorat, N.D., Pawar, S.H. & Delekar, S.D. (2016b). Visible light photo-induced antibacterial activity of TiO2-MWCNTs nanocomposites with varying the contents of MWCNTs, J. Photochem. Photobiol. A., Chem., 328, pp. 50-58. DOI: 10.1016/j.jphotochem.2016.05.016
  • 65. Kühn, K.P., Chaberny, I.F., Massholder, K., Stickler, M., Benz,V.W., Sonntag, H.G. & Erdinger, L. (2003). Disinfection of surfaces by photocatalytic oxidation with titanium dioxide and UVA light, Chemosphere, 53, pp. 71-77. DOI: 10.1016/S0045-6535(03)00362-X
  • 66. Lan, Y., Hu, C., Hu, X. & Qu, J. (2007). Efficient destruction of pathogenic bacteria with AgBr/TiO2 under visible light irradiation, Appl. Catal. B, Environ., 73, pp. 354-360. DOI: 10.1016/j.apcatb.2007.01.004
  • 67. Li, G., Nie, X., Chen, J., Jiangae, Q., An, T., Wong, P.K., Zhang, H., Zhao, H. & Yamashita, H. (2015). Enhanced visible-light driven photocatalytic inactivation of E. coli using g-C3N4/TiO2 hybrid photocatalyst synthesized using a hydrothermal-calcination approach, Water Res., 86, pp. 17-24. DOI: 10.1016/j.watres.2015.05.053
  • 68. Li, J., Yin,Y., Liu,E., Maa,Y., Wan, J., Fan, J., & Hu, X. (2017). In situ growing Bi2MoO6 on g-C3N4 nanosheets with enhanced photocatalytic hydrogen evolution and disinfection of bacteria under visible light irradiation, J. Hazard. Mater., 321, pp. 183-192. DOI: 10.1016/j.jhazmat.2016.09.008
  • 69. Li, Y., Zhang, C., Shuai, D., Naraginti, S., Wang, D. & Zhang, W. (2016). Visible-light-driven photocatalytic inactivation of MS2 by metal-free g-C3N4: virucidal performance and mechanism, Water Res., 106, pp. 249-258. DOI: 10.1016/j.watres.2016.10.009
  • 70. Liu, B., Xue, Y., Zhang, J., Han, B., Zhang, J., Suo, X., Mu, L. & Shi, H. (2017). Visible-light driven TiO2/Ag3PO4 heterostructures with enhanced antifungal activity against agricultural pathogenic fungi Fusarium graminearum and mechanism insight, Environ. Sci. Nano, 4(1), pp. 255-264. DOI: 10.1039/C6EN00415F
  • 71. Liu, J., Liu, L., Bai, H., Wang, Y. & Sun, D.D. (2011). Gram-scale production of graphene oxide-TiO2 nanorod composites: towards high-activity photocatalytic materials, Appl. Catal. B, Environ., 106, pp. 76-82. DOI: 10.1016/j.apcatb.2011.05.007
  • 72. Liu, S., Wei, L., Hao, L., Fang, N., Chang, M.W., Xu, R., Yang,Y. & Chen, Y. (2009). Sharper and faster ‘Nano Darts’ kill more bacteria: a study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube, ACS Nano, 3, pp. 3891-3902. DOI: 10.1021/nn901252r
  • 73. Liu, Y., Wang, X., Yang, F. & Yang, X. (2008). Excellent antimicrobial properties of mesoporous anatase TiO2 and Ag/TiO2 composite films, Micropor. Mesopor. Mater., 114, pp. 431-439. DOI: 10.1016/j.micromeso.2008.01.032
  • 74. Ma, S., Zhan, S., Jia, Y., Shi, Q. & Zho, Q. (2016). Enhanced disinfection application of Ag-modified g-C3N4 composite under visible light, Appl. Catal. B Environ., 186, pp. 77-87. DOI: 10.1016/j.apcatb.2015.12.051
  • 75. Maness, P.C., Smolinski, S., Blake, D.M., Huang, Z., Wolfrum, E.J. & Jacoby, W.A. (1999). Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism, Appl. Environ. Microbiol., 65, pp. 4094-4098. DOI: 10.1128/AEM.65.9.4094-4098.1999
  • 76. Matsunaga, T., Tamoda, R., Nakajima, T. & Wake, H. (1985). Photoelectrochemical sterilization of microbial cells by semiconductor powders, FEMS Microbiol. Lett., 29, pp. 211-214. DOI: 10.1111/j.1574-6968.1985.tb00864.x
  • 77. Menaka, R. & Subiya, R. (2016). Synthesis of zinc oxide nano powder and its characterization using XRD, SEM and antibacterial activity against, Int. J. Sci. Res., 5, pp. 269-71.
  • 78. Michalski, R., Dworniczek, E., Caplovicova, M., Monfort, O., Lianos, P., Caplovic, L. & Plesch, G. (2016). Photocatalytic properties and selective antimicrobial activity of TiO2(Eu)/CuO nanocomposite, Appl. Surf. Sci., 371, pp. 538-546. DOI: 10.1016/j.apsusc.2016.03.003
  • 79. Molinari, R., Argurio, P., Bellardita, M. & Palmisano, L. (2017). Photocatalytic processes in membrane reactors, In: Drioli, E., Giorno, L. & Fontananova, E. (Eds.), Comprehensive Membrane Science and Engineering, second edition, 3, (pp. 101-138). Oxford: Elsevier, 2017.
  • 80. Murugesan, P., Moses, J.A. & Anandharamakrishnan, C. (2019). Photocatalytic disinfection efficiency of 2D structure graphitic carbon nitride-based nanocomposites: a review, J. Mater. Sci., 54, pp. 12206-12235. DOI: 10.1007/s10853-019-03695-2
  • 81. Narayanan, P.M., Wilson, W.S., Abraham, A.T. & Sevanan, M. (2012). Synthesis, characterization, and antimicrobial activity of zinc oxide nanoparticles against human pathogens, Bionanosci., 2, pp. 329-335. DOI: 10.1007/s12668-012-0061-6
  • 82. Nasir, A.M., Awang, N., Hubadillah, S.K., Jaafar, J., Othman, M.H.D. Norhayati. W. Salleh, W. & Ismail, A.F. (2021). A review on the potential of photocatalysis in combatting SARS-CoV-2 in wastewater, Journal of Water Process Engineering, 42, 102111. DOI: 10.1016/j.jwpe.2021.102111
  • 83. Navale, G.R., Thripuranthaka, M., Late, D.J. & Shinde, S.S. (2015). Antimicrobial activity of ZnO nanoparticles against pathogenic bacteria and fungi, JSM Nanotechnol. Nanomed., 3, 1033.
  • 84. Ng, T.W., Zhang, L., Liu, J., Huang, G., Wang, W. & Wong, P.K. (2016). Visible-light-driven photocatalytic inactivation of Escherichia coli by magnetic Fe2O3-AgBr, Water Res., 90, pp. 111-118. DOI: 0.1016/j.watres.2015.12.022
  • 85. Ouyang, K., Dai, K., Chen, H., Huang, Q., Gao, C. & Cai, P. (2017). Metal-free inactivation of E. coli O157:H7 by fullerene/C3N4 hybrid under visible light irradiation, Ecotoxicol. Environ. Saf., 136, pp. 40-45. DOI: 10.1016/j.ecoenv.2016.10.030
  • 86. Ouyang, K., Dai, K., Walker, S.L., Huang, Q., Yin, X. & Cai, P. (2016). Efficient photocatalytic disinfection of Escherichia coli O157: H7 using C70-TiO2 hybrid under visible light irradiation, Sci. Rep., 6, 25702. DOI: 10.1038/srep25702
  • 87. Padmavathy, N. & Vijayaraghavan, R. (2008). Enhanced bioactivity of ZnO nanoparticles e an antimicrobial study, Sci. Technol. Adv. Mater., 9, 035004. DOI: 10.1088/1468-6996/9/3/035004
  • 88. Page, K., Palgrave, R.G., Parkin, I.P., Wilson, M., Savin, S.L.P. & Chadwick, A.V. (2007). Titania and silver-titania composite films Chemistry, 17, pp. 95-104. DOI: 10.1039/b611740f
  • 89. Pasquini, L.M., Hashmi, S.M., Sommer, T.J., Elimelech, M. & Zimmerman, J.B. (2012). Impact of surface functionalization on bacterial cytotoxicity of single walled carbon nanotubes, Environ. Sci. Technol., 46, pp. 6297-6305. DOI: 10.1021/es300514s
  • 90. Pelaez, M., Nolan, N.T., Pillai, S.C., Seery, M.K., Falaras, P., Kontos, A.G., Dunlop, P.S., Hamilton, J.W., Byrne, J.A. & O’shea, K. (2012). A review on the visible light active titanium dioxide photocatalysts for environmental applications, Appl. Catal. B: Environ., 125, pp. 331-349. DOI: 10.1016/j.apcatb.2012.05.036
  • 91. Petronella, F., Truppi, C., Ingrosso, A., Placido, T., Striccoli, M., Curri, M.L., Agostiano, A. & Comparelli, R. (2016). Nanocomposite materials for photocatalytic degradation of pollutants, Catal. Today, 281, pp. 85-100. DOI: 10.1016/j.cattod.2016.05.048
  • 92. Podporska-Carroll, J., Panaitescu, E., Quilty, B., Wang, L., Menon, L. & Pillai, S.C. (2015). Antimicrobial properties of highly efficient photocatalytic TiO2 nanotubes, Appl. Catal. B: Environ., 176, pp. 70-75. DOI: 10.1016/j.apcatb.2015.03.029
  • 93. Qin, J., Huo, J., Zhang, P., Zeng, J., Wang, T. & Zeng, H. (2015). Improving photocatalytic hydrogen production of Ag/g-C3N4 nanocomposites by dye-sensitization under visible light irradiation, Nanoscale, 8, pp. 2249-2259, DOI: 10.1039/C5NR06346A
  • 94. Qu, X., Alvarez, P.J. & Li, Q. (2013). Applications of nanotechnology in water and wastewater treatment, Water Res., 47, pp. 3931-3946. DOI: 10.1016/j.watres.2012.09.058
  • 95. Raizada, P., Sudhaik, A. & Singh, P. (2019). Photocatalytic water decontamination using graphene and ZnO coupled photocatalysts: A review, Materials Science for Energy Technologies, 2(3), pp. 509-525. DOI: 10.1016/j.mset.2019.04.007
  • 96. Rana, S., Srivastava, R., Sorensson, M. & Misra, R. (2005). Synthesis and characterization of nanoparticles with magnetic core and photocatalytic shell: anatase TiO2-NiFe2O4 system, Mater. Sci. Eng. B, 119, pp. 144-151. DOI: 10.1016/j.mseb.2005.02.043
  • 97. Rawat, J., Rana, S., Srivastava, R. & Misra, R.D.K. (2007). Antimicrobial activity of composite nanoparticles consisting of titania photocatalytic shell and nickel ferrite magnetic core, Mater. Sci. Eng. C, 27, pp. 540-545. DOI: 10.1016/j.msec.2006.05.021
  • 98. Reddy, M.P., Venugopal, A. & Subrahmanyam, M. (2007). Hydroxyapatite-supported Ag-TiO2 as Escherichia coli disinfection photocatalyst, Water Res., 41, pp. 379-386. DOI: 10.1016/j.watres.2006.09.018
  • 99. Reddy, P.A.K., Reddy, P.V.L., Kwon, E., Kim, K.H., Akter T. & Kalagara, S. (2016). Recent advances in photocatalytic treatment of pollutants in aqueous media, Environ. Int., 91, pp. 94-103. DOI: 10.1016/j.envint.2016.02.012
  • 100. Rengifo-Herrera, J., Kiwi, J. & Pulgarin, C.N. (2009). S co-doped and N-doped Degussa P-25 powders with visible light response prepared by mechanical mixing of thiourea and urea. Reactivity towards E. coli inactivation and phenol oxidation, J. Photochem. Photobiol. A, Chem., 205, pp. 109-115. DOI: 10.1016/j.jphotochem.2009.04.015
  • 101. Rengifo-Herrera, J.A. & Pulgarin, C. (2010). Photocatalytic activity of N, S co-doped and N doped commercial anatase TiO2 powders towards phenol oxidation and E. coli inactivation under simulated solar light irradiation, Sol. Energy, 84, pp. 37-43. DOI: 10.1016/j.solener.2009.09.008
  • 102. Richter, C., Panaitescu, E., Willey, R.J. & Menon, L. (2007). Titania nanotubes prepared by anodization in fluorine-free acids, J. Mater. Res., 22, pp. 1624-1631. DOI: 10.1557/JMR.2007.0203
  • 103. Rincón, A.G. & Pulgarin, C. (2003). Photocatalytic inactivation of E. coli: effect of (continuous-intermittent) light intensity and of (suspended-fixed) TiO2 concentration, Appl. Catal. B, 44, pp. 263-284. DOI: 10.1016/S0926-3373(03)00076-6
  • 104. Rtimi, S., Baghriche, O., Pulgarin, C., Lavanchy, J.C. & Kiwi, J. (2013). Growth of TiO2/Cu films by HiPIMS for accelerated bacterial loss of viability, Surf. Coat. Technol., 232, pp. 804-813. DOI: 10.1016/j.surfcoat.2013.06.102
  • 105. Rtimi, S., Pulgarin, C., Sanjines, R., Nadtochenko, V., Lavanchy, J.C. & Kiwi, J. (2015). Preparation and mechanism of Cu-decorated TiO2-ZrO2 films showing accelerated bacterial inactivation, ACS Appl. Mater. Interfaces, 71, pp. 12832-12839. DOI: 10.1098/rsfs.2014.0046
  • 106. Saito, T., Iwase, T., Horie, J. & Morioka, T. (1992). Mode of photocatalytic bactericidal action of powdered semiconductor TiO2 on mutans streptococci, J. Photochem. Photobiol. B, 14, pp. 369-379. DOI: 10.1016/1011-1344(92)85115-B
  • 107. Seery, M.K., George, R., Floris, P. & Pillai, S.C. (2007). Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis, J. Photochem. Photobiol. A, 189, pp. 258-263. DOI: 10.1016/j.jphotochem.2007.02.010
  • 108. Sengupta, J. & Hussain C.M. (2021). Carbon nanomaterials to combat virus: A perspective in view of COVID-19, Carbon Trends 2, 100019. DOI: 10.1016/j.cartre.2020.10 0 019
  • 109. Stan, M.S., Nica, I.C., Dinischiotu, A., Varzaru, E., Iordache, O.G, Dumitrescu, I., Popa, M., Chifiriuc, M.C., Pircalabioru, G.G. & Lazar, V. (2016). Photocatalytic, antimicrobial and biocompatibility features of cotton knit coated with Fe-N-Doped titanium dioxide nanoparticles, Materials, 9, 78. DOI: 10.3390/ma9090789
  • 110. Sun, L., Du, T., Hu, C., Chen, J., Lu, J., Lu, Z. & Han, H. (2017). Antibacterial activity of graphene oxide/g-C3N4 composite through photocatalytic disinfection under visible light, ACS Sustain Chem. Eng., 5, pp. 8693-8701. DOI: 10.1021/acssuschemeng.7b01431
  • 111. Sung-Suh, H.M., Choi, J.R., Hah, H.J., Koo, S.M. & Bae, Y.C. (2004). Comparison of Ag deposition effects on the photocatalytic Nanoparticles for water disinfection by photocatalysis: A review 17 activity of nanoparticulate TiO2 under visible and UV light irradiation, J. Photochem. Photobiol. A, 163, pp. 37-44. DOI: 10.1016/S1010-6030(03)00428-3
  • 112. Tayel, A.A., El-Tras, W.F., Moussa, S., El-Baz, A.F., Mahrous, H. & Salem, M.F. (2011). Antibacterial action of zinc oxide nanoparticles against foodborne pathogens, J Food Saf., 31, pp. 211-218. DOI: 10.1111/j.1745-4565.2010.00287.x
  • 113. Teng, Z., Yang, N., Lv, H., Wang, S., Hu, M., Wang, C., Wang, D. & Wang, G. (2018). Edge-functionalized g-C3N4 nanosheets as a highly efficient metal-free photocatalyst for safe drinking water, Chem., 5, pp. 1-17. DOI: 10.1016/j.chempr.2018.12.009
  • 114. Thurston, J.H., Hunter, N.M. & Cornell, K.A. (2016). Preparation and characterization of photoactive antimicrobial graphitic carbon nitride (g-C3N4) films, RSC Adv., 6, pp. 42240-42248. DOI: 10.1039/C6RA05613J
  • 115. Thurston, J.H., Hunter, N.M., Wayment, L.J. & Cornell, K.A. (2017). Urea-derived graphitic carbon nitride (u-g-C3N4) films with highly enhanced antimicrobial and sporicidal activity, J. Colloid. Interface Sci., 505, pp. 910-918. DOI: 10.1016/j.jcis.2017.06.089
  • 116. Wang, S., Yang, S., Quispe, E., Yang, H., Sanfiorenzo, C., Rogers, S.W., Wang, K., Yang, Y. & Hoffmann, M.R. (2021). Removal of Antibiotic Resistant Bacteria and Genes by UV-Assisted Electrochemical Oxidation on Degenerative TiO₂ Nanotube Arrays, ACS ES&T Engineering, 1 (3). pp. 612-622. DOI: 10.1021/acsestengg.1c00011
  • 117. Wang, W., Li, G., An, T., Chan, D.K.L., Yu, J.C. & Wong, P.K. (2018). Photocatalytic hydrogen evolution and bacterial inactivation utilizing sonochemical-synthesized g-C3N4 /red phosphorus hybrid nanosheets as a wide-spectral-responsive photocatalyst: the role of type I band alignment, Appl. Catal. B Environ., 238, pp. 126-135. DOI: 10.1016/j.apcatb.2018.07.004
  • 118. Wang, W., Yu, J.C., Xia, D., Wong, P.K. & Li, Y. (2013). Graphene and g-C3N4 nanosheets cow rapped elemental a-sulfur as a novel metalfree heterojunction photocatalyst for bacterial inactivation under visible-light, Environ. Sci. Technol., 47, pp. 8724-8732. DOI: 10.1021/es4013504
  • 119. Wang, Y., Wu, Y., Yang, H., Xue, X. & Liu, Z. (2016a). Doping TiO2 with boron or/and cerium elements: effects on photocatalytic antimicrobial activity, Vacuum, 131, pp. 58-64. DOI: 10.1016/j.vacuum.2016.06.003
  • 120. Wang, Z., Dong, K., Liu, Z., Zhang, Y., Chen, Z., Sun, H., Ren, J. & Qu, X. (2016b). Activation of biologically relevant levels of reactive oxygen species by Au/g-C3N4 hybrid nanozyme for bacteria killing and wound disinfection, Biomaterials, 113, pp. 145-157. DOI: 10.1016/j.biomaterials.2016.10.041
  • 121. Wong, M.S., Chu, W.C., Sun, D.S., Huang, H.S., Chen, J.H., Tsai, P.J., Lin, N.T., Yu, M.S., Hsu, S.F., Wang, S.L. & Chang, H.H. (2006). Visible-light-induced bactericidal activity of a nitrogen-doped titanium photocatalyst against human pathogens, Appl. Environ. Microbiol., 72, pp. 6111-6116. DOI: 10.1128/AEM.02580-05
  • 122. Wu, D., An, T., Li, G., Wang, W., Cai, Y., Yip, H.Y., Zhao, H. & Wong, P.K. (2015). Mechanistic study of the visible-light-driven photocatalytic inactivation of bacteria by graphene oxide-zinc oxide composite, Appl. Surf. Sci., 358, pp. 137-145. DOI: 10.1016/j.apsusc.2015.08.033
  • 123. Xia, D., Wang, W., Yin, R., Jiang, Z., An, T., Li, G., Zhao, H. & Wong, P.K. (2017). Enhanced photocatalytic inactivation of Escherichia coli by a novel Z-scheme g-C3N4/m-Bi2O4 hybrid photocatalyst under visible light: the role of reactive oxygen species, Appl. Catal. B Environ., 214, pp. 23-33. DOI: 10.1016/j.apcatb.2017.05.035
  • 124. Xu, J., Gao, Q., Bai, X., Wang, Z. & Zhu, Y. (2019). Enhanced visible-light induced photocatalytic degradation and disinfection activities of oxidized porous g-C3N4 by loading Ag nanoparticles, Catal. Today, 332, pp. 227-235. DOI: 10.1016/j.cattod.2018.07.024
  • 125. Xu, J., Li, Y., Zhou, X., Li, Y., Gao, Z.D., Song, Y.Y. & Schmuki, P. (2016). Graphitic C3N4-sensitized TiO2 nanotube layers: a visible-light activated efficient metal-free antimicrobial platform, Chem. Eur. J., 22, pp. 3947-3951. DOI: 10.1002/chem.201505173
  • 126. Xue, J., Ma, S., Zhou, Y., Zhang, Z. & He, M. (2015). Facile photochemical synthesis of Au/Pt/g-C3N4 with plasmon-enhanced photocatalytic activity for antibiotic degradation, ACS Appl. Mater. Interfaces, 7, pp. 9630-9637. DOI: 10.1021/acsami.5b01212
  • 127. Yamamoto, O. (2001). Influence of particle size on the antibacterial activity of zinc oxide, Int. J. Inorg. Mater., 3, pp. 643-646. DOI: 10.1016/S1466-6049(01)00197-0
  • 128. Zambrano-Zaragoza, M.L., González-Reza, R. & Mendoza-Muñoz, N. (2018). Nanosystems in edible coatings: A novel strategy for food preservation, International Journal of Molecular Sciences, 19, 705. DOI: 10.3390/ijms19030705
  • 129. Zeng, X., Wang, Z., Meng, N., McCarthy, D.T., Deletic, A., Pan, J.H. & Zhang, X. (2017). Highly dispersed TiO2 nanocrystals and carbon dots on reduced graphene oxide: ternary nanocomposites for accelerated photocatalytic water disinfection, Appl. Catal. B, Environ., 202, pp. 33-41. DOI: 10.1016/j.apcatb.2016.09.014
  • 130. Zhang, L.L., Chen, B., Xie, L.L. & Li, Z.F. (2011). Study on the antimicrobial properties of ZnO suspension against Gram-positive and Gram-negative bacteria strains, Adv. Mater. Res., 393-5, pp. 1488-1491. DOI: 10.4028/www.scientific.net/AMR.393-395.1488
  • 131. Zhao, H., Yu, H., Quan, X., Chen, S., Zhang, Y., Zhao, H. & Wang, H. (2014). Fabrication of atomic single layer graphitic-C3N4 and its high performance of photocatalytic disinfection under visible light irradiation, Appl. Catal. B Environ., 152-153, pp. 46-50. DOI: 10.1016/j.apcatb.2014.01.023
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-712fd340-4ab2-4d6d-8ea2-ba6d9e934cc4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.