PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Tractography Methods in Preoperative Neurosurgical Planning

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Knowledge of the location of nerve tracts during the surgical preoperative planning stage and during the surgery itself may help neurosurgeons limit the risk of causing neurological deficits affecting the patient’s essential abilities. Development of MRI techniques has helped profoundly with in vivo visualization of the brain’s anatomy, enabling to obtain images within minutes. Different methodologies are relied upon to identify anatomical or functional details and to determine the movement of water molecules, thus allowing to track nerve fibers. However, precise determination of their location continues to be a labor-intensive task that requires the participation of highly-trained medical experts. With the development of computational methods, machine learning and artificial intelligence, many approaches have been proposed to automate and streamline that process, consequently facilitating image-based diagnostics. This paper reviews these methods focusing on their potential use in neurosurgery for better planning and intraoperative navigation.
Rocznik
Tom
Strony
78--85
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
  • Department of Bioinformatics and Machine Recognition, Research and Academic Computer Network, ul. Kolska 12, Warsaw, Poland
  • Department of Bioinformatics and Machine Recognition, Research and Academic Computer Network, ul. Kolska 12, Warsaw, Poland
Bibliografia
  • [1] P. A. Young, P. H. Young, and D. L. Tolbert, Basic Clinical Neuroscience. Third Edition. Philadelphia: Lippincott Williams and Wilkins, 2015 (ISBN: 9781451173291).
  • [2] R. M. Young, A. Jamshidi, G. Davis, and J. H. Sherman, „Current trends in the surgical management and treatment of adult glioblastoma", Annals of Translational Medicine, vol. 3, no. 9, pp. 1-5, 2015 (DOI: 10.3978/j.issn.2305-5839.2015.05.10).
  • [3] K. D. Merboldt, W. Hanicke, and J. Frahm, „Self-diffusion NMR imaging using stimulated echoes", Journal of Magnetic Resonance (1969), vol. 64, no. 3, pp. 479-486, 1985 (DOI: 10.1016/0022-2364(85)90111-8).
  • [4] D. G. Taylor and M. C. Bushell, „The spatial mapping of translational diffusion coeficients by the NMR imaging technique", Physics in Medicine and Biology, vol. 30, no. 4, pp. 345-349, 1985 (DOI: 10.1088/0031-9155/30/4/009).
  • [5] J. E. Tanner, „Self diffusion of water in frog muscle", Biophysical Journal, vol. 28, no. 1, pp. 107-116, 1979 (DOI: 10.1016/S0006-3495(79)85162-0).
  • [6] D. F. Scollan, A. Holmes, R. Winslow, and J. Forder, „Histological validation of myocardial microstructure obtained from diffusion tensor magnetic resonance imaging", American Journal of Physiology - Heart and Circulatory Physiology, vol. 275, no. 6, pp. 2308-2318, 1998 (DOI: 10.1152/ajpheart.1998.275.6.H2308).
  • [7] M. E. Moseley et al., „Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system", Radiology, vol. 176, no. 2, pp. 439-445, 1990 (DOI: 10.1148/radiology.176.2.2367658).
  • [8] A. W. Toga et al., „Mapping the human connectome", Neurosurgery, vol. 71, no. 1, pp. 1-.5, 2012 (DOI: 10.1227/NEU.0b013e318258e9_).
  • [9] R. G. Briggs et al., „A Connectomic Atlas of the Human Cerebrum-Chapter 18: The Connectional Anatomy of Human Brain Networks", Operative Neurosurgery, vol. 15, no. 1, pp. 470-480, 2018 (DOI: 10.1093/ons/opy272).
  • [10] S. Mori and P. C. M. Van Zijl, „Fiber tracking: Principles and strategies - A technical review", NMR in Biomedicine, vol. 15, pp. 468-480, 2002 (DOI: 10.1002/nbm.781).
  • [11] B. Jeurissen, M. Descoteaux, S. Mori, and A. Leemans, „Diffusion MRI _ber tractography of the brain", NMR in Biomedicine, vol. 32, no. 4, pp. 1-22, 2019 (DOI: 10.1002/nbm.3785).
  • [12] P. J. Basser, J. Mattiello, and D. LeBihan, „MR diffusion tensor spectroscopy and imaging", Biophysical Journal, vol. 66, no. 1, pp. 259-267, 1994 (DOI: 10.1016/S0006-3495(94)80775-1).
  • [13] L. R. Frank, „Anisotropy in high angular resolution diffusionweighted MRI", Magnetic Resonance in Medicine, vol. 45, no. 6, pp. 935-939, 2001 (DOI: 10.1002/mrm.1125).
  • [14] D. S. Tuch et al. „High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity", Magnetic Resonance In Medicine, vol. 48, no. 4, pp. 577-582, 2002 (DOI: 10.1002/mrm.10268).
  • [15] P. J. Basser, „Fiber-tractography via diffusion tensor MRI (DTMRI)", in Proc. of the 6th Annual Meeting ISMRM, vol. 1, 1998, p. 3 [Online]. Available: https://nationalbii.com/wp-content/uploads/2020/10/Basser-ISMRM-1998.pdf
  • [16] M. Lazar et al., „White matter tractography using diffusion tensor deection", Human Brain Mapping, vol. 18, no. 4, pp. 306-321, 2003 (DOI: 10.1002/hbm.10102).
  • [17] J. D. Tournier, F. Calamante, and A. Connelly, „MRtrix: Diffusion tractography in crossing fiber regions", Int. J. of Imaging Systems and Technol., vol. 22, no. 1, pp. 53-66, 2012 (DOI: 10.1002/ima.22005).
  • [18] J. D. Tournier, F. Calamante, and A. Connelly, „Robust determination of the fibre orientation distribution in diffusion MRI: Nonnegativity constrained super-resolved spherical deconvolution", NeuroImage, vol. 35, no. 4, pp. 1459-1472, 2007 (DOI: 10.1016/j.neuroimage.2007.02.016).
  • [19] M. Descoteaux, R. Deriche, T. R. Knosche, and A. Anwander, „Deterministic and probabilistic tractography based on complex fibre orientation distributions", IEEE Transac. on Medical Imaging, vol. 28, no. 2, pp. 269-286, 2009 (DOI: 10.1109/TMI.2008.2004424).
  • [20] D. S. Tuch, „Q-ball imaging", Magnetic Resonance in Medicine, vol. 52, no. 6, pp. 1358-1372, 2004 (DOI: 10.1002/mrm.20279).
  • [21] A. Anwander, M. Tittgemeyer, D. von Cramon, A. Friederici, and T. Knosche, „Connectivity-based parcellation of broca's area", Cerebral Cortex, vol. 17, no. 4, pp. 816-825, 2006 (DOI: 10.1093/cercor/bhk034).
  • [22] M. A. Koch, D. G. Norris, and M. Hund-Georgiadis, „An investigation of functional and anatomical connectivity using magnetic resonance imaging", NeuroImage, vol. 16, no. 1, pp. 241-250, 2002 (DOI: 10.1006/nimg.2001.1052).
  • [23] I. Aganj et al., „A Hough transform global probabilistic approach to multiple-subject diffusion MRI tractography", Medical Image Analysis, vol. 15, no. 4, pp. 414-425, 2011 (DOI: 10.1016/j.media.2011.01.003).
  • [24] V. J. Wedeen, P. Hagmann, W.-Y. I. Tseng, T. G. Reese, and R. M. Weisskoff, „Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging", Magnetic Resonance in Medicine, vol. 54, no. 6, pp. 1377-1386, 2005 (DOI: 10.1002/mrm.20642).
  • [25] R. Gupta et al., „Artificial intelligence to deep learning: machine intelligence approach for drug discovery", Molecular Diversity, 2021 (DOI:10.1007/s11030-021-10217-3).
  • [26] A. Hosny, C. Parmar, J. Quackenbush, L. H. Schwartz, and H. J. W. L. Aerts, „Artificial intelligence in radiology", Nature Reviews Cancer, vol. 18, no. 8, pp. 500-510, 2018 (DOI: 10.1038/s41568-018-0016-5).
  • [27] M. W. Libbrecht and W. S. Noble, „Machine learning applications in genetics and genomics", Nature Reviews Genetics, vol. 16, no. 6, pp. 321-332, 2015 (DOI: 10.1038/nrg3920).
  • [28] P. F. Neher, M. A. Cote, J. Ch. Houde, M. Descoteaux, and K. H. Maier-Hein, „Fiber tractography using machine learning", NeuroImage, vol. 158, pp. 417-429, 2017 (DOI: 10.1016/j.neuroimage.2017.07.028).
  • [29] P. Poulin et al., „Learn to track: deep learning for tractography", bioRxiv, vol. 1, pp. 540-547, 2017 (DOI: 10.1101/146688).
  • [30] S. Hochreiter and J. Schmidhuber, „Long short-term memory", Neural Computation, vol. 9, no. 8, pp. 1735-1780, 1997 (DOI: 10.1162/neco.1997.9.8.1735).
  • [31] P. Poulin, F. Rheault, E. St-Onge, P.-M. Jodoin, and M. Descoteaux, „Bundle-wise deep tracker: Learning to track bundle-specific streamline paths", in Proc. of the Int. Society for Magnetic Resonance in medicine ISMRM-ESMRMB, Paris, France, 2018 [Online]. Available: https://index.mirasmart.com/ISMRM2018/PDF_les/0041.html
  • [32] I. Benou and T. R. Raviv, „DeepTract: A Probabilistic Deep Learning Framework for White Matter Fiber Tractography", D. Shen et al. Eds. in Proc. Medical Image Computing and Computer Assisted Intervention - MICCAI 2019, 22nd Int. Conf., Shenzhen, China, 2019, pp. 626-635 (DOI: 10.1007/978-3-030-32248-9 70).
  • [33] V.Wegmayr, G. Giuliari, S. Holdener, and J. Buhmann, „Data-driven fiber tractography with neural networks", in Proc. IEEE Int. Symp. on Biomedical Imag. (ISBI), Washington, DC, USA, 2018, pp. 1030-1033 (DOI: 10.1109/ISBI.2018.8363747).
  • [34] O. Lucena et al., „Using convolution neural networks to learn enhanced fiber orientation distribution models from commercially available diffusion magnetic resonance imaging", arXiv, 2020 [Online]. Available: https://arxiv.org/pdf/2008.05409.pdf
  • [35] W. Li, G. Wang, L. Fidon, S. Ourselin, M. J. Cardoso, and T. Vercauteren, „On the compactness, efficiency, and representation of 3D convolutional networks: Brain parcellation as a pretext task. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)", In Proc. Int. Conf. on Informat. Process. in Medical Imag., Boone, NC, USA, 2017, pp. 348-360 (DOI: 10.1007/978-3-319-59050-9 28).
  • [36] O. Cicek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger, „3D U-Net: Learning dense volumetric segmentation from sparse annotation", 2016 [Online]. Available: https://arxiv.org/pdf/1606.06650
  • [37] K. H. Maier-Hein et al., „The challenge of mapping the human connectome based on diffusion tractography", Nature Communications, vol. 8, no. 1, 2017 (DOI: 10.1038/s41467-017-01285-x).
  • [38] M. F. Glasser et al., „The human connectome project's neuroimaging approach", Nature Neuroscience, vol. 19, no. 9, pp. 1175-1187, 2016 (DOI: 10.1038/nn.4361).
  • [39] K. G. Schilling et al., „Limits to anatomical accuracy of diffusion tractography using modern approaches", NeuroImage, vol. 185, pp. 1-11, 2019 (DOI: 10.1016/j.neuroimage.2018.10.029).
  • [40] E. W. Dijkstra, „A note on two problems in connection with graphs", Numerische mathematik, vol. 1, no. 1, pp. 269-271, 1959 (DOI: 10.1007/BF01386390).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-712de701-7b7f-42ff-97cb-5cc5d5360bf7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.