PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A method for quantification of lung resistive and compliant properties for spirometry interpretation support -Tests on a virtual patient

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The forced expiratory volume in one second (FEV1), the fundamental index in obstructive lung disease diagnosis, depends on both resistive (RP) and compliant (CP) properties of the respiratory system (RS). The study aim was to test initially a method that could differentiate their influence to aid spirometry interpretation during screening examinations. Tests were done on a virtual RS elaborated previously. After respiratory muscle relaxation, a part of air was exhaled passively to an added compliance (Cad) or through an added resistance (Rad). The CP and RP were estimated from mouth pressure changes under different conditions of RS and measurement (different obstruction severities, various Cad and Rad values, etc.). Measurements had to be performed after maximal inspiration to avoid dependence of results on the lung volume. The Cad maneuver enabled to estimate the CP properly. Inertances and bronchi collapse caused pressure fluctuations, whereas bronchi reopening modified pressure rise after airflow interruption. Rad > 0.8 kPa s/L eliminated these problems and made the RP estimation independent from the Rad value and the CP. The calculated value of resistance depended on both airway resistance and parenchyma viscosity (like FEV1) and viscosity of other tissues. Since collapse instantaneous observation in real patients is impossible, initial but extensive tests illustrating influence of the collapse on measurement could be done only on a virtual RS.
Twórcy
  • Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, ul. Ks. Trojdena 4, 02-109 Warszawa, Poland
autor
  • Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, ul. Ks. Trojdena 4, 02-109 Warszawa, Poland
Bibliografia
  • [1] Murray CJ, Lopez AD. Alternative projections of mortality and disability by cause 1990–2020: Global Burden of Disease Study. Lancet 1997;349:1498–504.
  • [2] Gólczewski T, Darowski M, Michnikowski M. A model of respiratory system mechanics. In: Darowski M, Ferrari G, editors. Comprehensive models of cardiovascular and respiratory systems: their mechanical support and interactions. New York: Nova Science Publishers Inc.; 2010. pp. 127–69.
  • [3] Gólczewski T. A model of gas transfer and exchange. In: Darowski M, Ferrari G, editors. Comprehensive models of cardiovascular and respiratory systems: their mechanical support and interactions. New York: Nova Science Publishers Inc.; 2010. pp. 169–89.
  • [4] Darowski M, Gólczewski T, Michnikowski M. Choice of proper lung ventilation method. Biocybern Biomed Eng 2006; 26(1): 21–37.
  • [5] Gólczewski T. Gas exchange in virtual respiratory system – simulation of ventilation without lungs movement. Int J Artif Organs 2007; 30(12): 1047–56.
  • [6] Gólczewski T, Zieliński K, Ferrari G, Palko KJ, Darowski M. Influence of ventilation mode on blood oxygenation – investigation with Polish virtual lungs and Italian model of circulation. Biocybern Biomed Eng 2010; 30(1): 17–30.
  • [7] Tgol.e-spirometry: a system for e-learning of spirometry interpretation, http://www.virtual-spirometry.eu/en/index. html (accessed 29.06.11).
  • [8] Tomalak W, Gólczewski T, Michnikowski M, Darowski M. Virtual respiratory system for interactive e-learning of spirometry. Eur Respir Rev 2008; 17(107): 36–8.
  • [9] Golczewski T, Darowski M. Virtual respiratory system for education and research: simulation of expiratory flow limitation for spirometry. Int J Artif Organs 2006; 29(10): 961–72.
  • [10] Macklem PT, Mead J. Resistance of central and peripheral airways measured by a retrograde catheter. J Appl Physiol 1967; 22(3): 395–402.
  • [11] Gólczewski T, Darowski M. Virtual respiratory system in investigation of CPAP influence on optimal breathing frequency in obstructive lungs disease. Nonlinear Biomed Phys 2011; 1:6.
  • [12] Von Neergaard K, Wirz K. Die Messung der Stromungswiderstande in den Atemwegen des Menschen, insbesondere bei Asthma und Emphysem. Z Klin Med 1927; 105:51–82 [in German].
  • [13] Jabłoński I, Mroczka J. Computer-aided evaluation of a new interrupter algorithm in respiratory mechanics measurement. Biocybern Biomed Eng 2006; 26(3): 33–47.
  • [14] Kessler V, Mols G, Bernhard H, Haberthür C, Guttmann J. Interrupter airway and tissue resistance: errors caused by valve properties and respiratory system compliance. J Appl Physiol 1999; 87(4): 1546–54.
  • [15] Oswald-Mammosser M, Charloux A, Enache I, Lonsdorfer- Wolf E. The opening interrupter technique for respiratory resistance measurements in children. Respirology 2010; 15 (7): 1104–10.
  • [16] Darowski M, Gottlieb-Inacio I, Ludwigs U, Hedenstierna G. Assessment of respiratory system compliance by a flow recording method. Acta Anaesthesiol Scand 1995; 39(4): 462–6.
  • [17] Lubiński W, Gólczewski T. Physiologically interpretable prediction equations for spirometric indices. J Appl Physiol 2010; 108(5): 1440–6.
  • [18] Marshall R, DuBois AB. The measurement of the viscous resistance of the lung tissues in normal man. Clin Sci 1956; 15(1): 161–70.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-712c13e6-b5a4-4b2f-93d9-bcbf3e721f63
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.