Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Poprawa właściwości hydrofobowych i przeciwgrzybicznych materiałów z elektroprzędzonego octanu celulozy poprzez zastosowanie nanocząsteczek ZnO
Języki publikacji
Abstrakty
Suitable conditions for the preparation of nano- and microstructured materials from cellulose acetate and cellulose acetate/ZnO from solutions/suspensions in aceton/water by electrospinning/electrospraying were found. The materials obtained were characterised by scanning electron microscopy (SEM), X-ray diffraction analysis (XRD) and contact angle measurements. The antifungal activity of the materials obtained against Phaeomoniella chlamydospora, which is one of the main species causing diseases in grapevines, was studied as well. It was found that electrospinning of CA solutions with a concentration of 10 wt% reproducibly resulted in the preparation of defect-free fibres with a mean fibre diameter of ~780 nm. The incorporation of ZnO nanoparticles resulted in the fabrication of hybrid materials with superhydrophobic properties (contact angle 152°). The materials decorated with ZnO possessed antifungal activity against P. chlamydospora. Thus, the fibrous materials of cellulose acetate decorated with ZnO particles obtained can be suitable candidates to find potential application in agriculture for plant protection.
W pracy wskazano odpowiednie warunki do otrzymywania materiałów nano- i mikrostrukturalnych z octanu celulozy i octanu celulozy/ZnO z roztworów/zawiesin w acetonie/wodzie metodą elektroprzędzenia/elektrorozpylania. Uzyskane materiały scharakteryzowano za pomocą skaningowej mikroskopii elektronowej (SEM), dokonano analizy dyfrakcji rentgenowskiej (XRD) oraz pomiarów kąta zwilżania. Zbadano również działanie przeciwgrzybiczne uzyskanych materiałów przeciwko Phaeomoniella chlamydospora, który jest jednym z głównych gatunków wywołujących choroby winorośli. Stwierdzono, że podczas elektroprzędzenia z roztworów CA o stężeniu 10% wag. w sposób powtarzalny otrzymywano włókna wolne od defektów o średniej średnicy ~ 780 nm. Wprowadzenie nanocząstek ZnO zaowocowało wytworzeniem materiałów hybrydowych o właściwościach superhydrofobowych (kąt zwilżania 152°). Materiały z dodatkiem ZnO wykazywały działanie przeciwgrzybiczne przeciwko P. chlamydospora. Stwierdzono, że otrzymane materiały mogą być stosowane w rolnictwie do ochrony roślin.
Czasopismo
Rocznik
Strony
40--45
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
autor
- Bulgarian Academy of Sciences, Institute of Polymers, Laboratory of Bioactive Polymers, Acad. G. Bonchev St, bl. 103A, BG-1113 Sofia, Bulgaria
autor
- Bulgarian Academy of Sciences, Institute of Polymers, Laboratory of Bioactive Polymers, Acad. G. Bonchev St, bl. 103A, BG-1113 Sofia, Bulgaria
autor
- Bulgarian Academy of Sciences, Institute of Polymers, Laboratory of Bioactive Polymers, Acad. G. Bonchev St, bl. 103A, BG-1113 Sofia, Bulgaria
autor
- Bulgarian Academy of Sciences, Institute of Polymers, Laboratory of Bioactive Polymers, Acad. G. Bonchev St, bl. 103A, BG-1113 Sofia, Bulgaria
autor
- Agricultural University, Department of Microbiology, BG-4000 Plovdiv, Bulgaria
Bibliografia
- 1. Xue J, Wu T, Dai Y, Xia Y. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chem. Rev. 2019; 119: 5298-5415.
- 2. Xue J, Xie J, Liu W, Xia Y. Electrospun Nanofibers: New Concepts, Materials, and Applications. Acc. Chem. Res. 2017; 50: 1976-1987.
- 3. Sett S, Lee M, Weith M, Pourdeyhim B, Yarin A. Biodegradable and Biocompatible Soy Protein/Polymer/Adhesive Sticky Nano-Textured Interfacial Membranes for Prevention of Esca Fungi Invasion, into Pruning Cuts and Wounds of Vines. J. Mater. Chem. B. 2015; 3: 2147-2162.
- 4. Buchholz V, Molnar M, Wang H, Reich S, Agarwal S, Fischer M, Greiner A. Protection of Vine Plants Against Esca Disease by Breathable Electrospun Antifungal Nonwovens. Macromol. Biosci. 2016; 16: 1391-1397.
- 5. Spasova M, Manolova N, Rashkov I, Naydenov M. Electrospun 5-Chloro-8-Hydroxyquinoline-Loaded Cellulose Acetate/Polyethylene Glycol Antifungal Membranes Against ESCA. Polymers 2019, 11, 1617:1-12.
- 6. Spasova M, Stoilova O, Manolova N, Rashkov I, Naydenov M. Electrospun Eco-Friendly Materials Based on Poly(-3-hydroxybutyrate) (PHB) and TiO2 with Antifungal Activity Prospective for Esca Treatment. Polymers 2020; 12, 1384: 1-11.
- 7. Thakur V, Thakur M. Processing and Characterization of Natural Cellulose Fibers/Thermoset Polymer Hybrids. Carbohyd. Polym. 2014; 109:102-117.
- 8. Fischer S, Thümmler K, Volkert B, Hettrich K, Schmidt I, Fischer K. Properties and Applications of Cellulose Acetate. Macromol. Symp. 2008; 262: 89-96.
- 9. Sirelkhatim A, Mahmud S, Seeni A, Kaus N, Ann L, Bakhori S, Hasan H, Hasan D, Mohamad D. Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nano-Micro Lett. 2015; 7: 219-242.
- 10. Qing Y, Yang C, Hu C, Zheng Y, Liu C. A Facile Method to Prepare Superhydrophobic Luorinated Polysiloxane/Zno Nanohybrid Coatings with Corrosion Resistance. Appl. Surf. Sci. 2015; 326: 48-54.
- 11. Spasova M, Manolova N, Markova N, Rashkov I. Superhydrophobic PVDF and PVDF-HFP Nanofibrous Mats with Antibacterial and Anti-Biofouling Properties. Appl. Surf. Sci. 2016; 363: 363-371.
- 12. Spasova M, Manolova N, Markova N, Rashkov I. Tuning the Properties of PVDF or PVDF-HFP Fibrous Materials Decorated with ZnO Nanoparticles by Applying Electrospinning Alone or in Conjunction with Electrospraying. Fibers and Polymers 2017; 18: 649-657.
- 13. Shaghaleh H, Xu X, Wang S. Current Progress in Production of Biopolymeric Materials Based on Cellulose, Cellulose Nanofibers, and Cellulose Derivatives. RSC Adv. 2018; 8: 825-842.
- 14. Rasband WS. ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, https://imagej.nih.gov/ij/, 1997-2016.
- 15. Spasova M, Mincheva R, Paneva D, Manolova N, Rashkov I. Perspectives on: Criteria for Complex Evaluation of the Morphology and Alignment of Electrospun Polymer Nanofibers. J. Bioact. Compat. Polym. 2006; 21: 465-479.
- 16. Liu H, Hsieh Y-L. Ultrafine Fibrous Cellulose Membranes from Electrospinning of Cellulose Acetate. J. Polym. Sci., Part B: Polym. Phys. 2002; 40: 2119-2129.
- 17. Son W, Youk J, Lee T, Park W. Electrospinning of Ultrafine Cellulose Acetate Fibers: Studies of a New Solvent System and Deacetylation of Ultrafine Cellulose Acetate Fibers. J Polym Sci B Polym Phys. 2004; 42: 5-11.
- 18. Shenoy S, Bates W, Frisch H, Wnek G. Role of Chain Entanglements on Fiber Formation During Electrospinning of Polymer Solutions: Good Solvent, Non-Specific Polymer–Polymer Interaction Limit. Polymer 2005; 46: 3372-3384.
- 19. Frey MW. Electrospinning Cellulose and Cellulose Derivatives. Polym. Rev. 2008; 48 (2): 378-391.
- 20. Koombhongse S, Liu W, Reneker D. Flat Polymer Ribbons and other Shapes by Electrospinning. J. Polym. Sci., Part B Polym. Phys. 2001; 39: 2598-2606.
- 21. Fong H, Chun I, Reneker D. Beaded Nanofibers Formed during Electrospinning. Polymer 1999; 40: 4585-4592.
- 22. Yuan Y, Lee T. In Surface Science Techniques, 1. Contact Angle and Wetting Properties, Springer, 2013.
- 23. Talam S, Karumuri S, Gunnam N. Synthesis, Characterization, and Spectroscopic Properties of ZnO Nanoparticles. ISRN Nanotechnology 2012; Article ID 372505, 6 pages, http://dx.doi.org/10.5402/2012/372505.
- 24. Virovska D, Paneva D, Manolova N, Rashkov I, Karashanova D. Photocatalytic Self-Cleaning Poly(L-Lactide) Materials Based on A Hybrid Between Nanosized Zinc Oxide and Expanded Graphite or Fullerene. Mater. Sci.Eng. C, 2016; 60: 184-194.
- 25. Zhou W, He J, Cui S, Gao W. Studies of Electrospun Cellulose Acetate Nanofibrous Membranes. Materials Science Journal 2011; 5: 51-55.
- 26. Larignon P, Dubos B. Fungi Associated with Esca Disease in Grapevine. Eur. J. Plant. Pathol. 1997; 103: 147-157.
- 27. Spasova M, Manolova N, Rashkov I, Naydenov M. Electrospun 5-Chloro-8-Hydroxyquinoline-Loaded Cellulose Acetate/Polyethylene Glycol Antifungal Membranes Against Esca. Polymers 2019, 11, 1617.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-71287a16-d970-4b5a-aeaa-f34ade6bfa52