Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, the performance of a super twisting sliding mode controller (ST-SMC) is investigated for a multifunctional single-stage inverter that connects a photovoltaic (PV) system to the three-phase utility grid supplying the non-linear load. In this work, the single-stage inverter is controlled to improve power quality by compensating the current harmonics of nonlinear load and to inject maximum power from the PV system to the grid with ST-SMC controller. In this way, the ST-SMC controller is implemented to adjust the DC bus voltage to the value determined by the maximum power point tracking (MPPT) algorithm, as well as to the single-stage inverter current control using the synchronous reference frame theory. According to the simulation results, the ST-SMC controller provides high robustness and better performance in transient and steady state conditions. The results show that the total harmonics distortion (THD) of the grid current is reduced to 1.75% and the DC bus voltage reaches its set-point at 0.08 second with a small amount, approximately 0.05%, of the overshoot. In addition, the superiority and accuracy of the proposed scheme is verified by replacing conventional SMC and PI controllers with super twisting sliding mode controllers. Evaluate the suggested scheme’s performance is done using the MATLAB/Simulink software.
Czasopismo
Rocznik
Tom
Strony
105--125
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr., wz.
Twórcy
autor
- Department of Electrical Engineering, Shiraz University of Technology, Shiraz, I.R. Iran
autor
- Department of Electrical Engineering, Shiraz University of Technology, Shiraz, I.R. Iran
autor
- Department of Electrical Engineering, Shiraz University of Technology, Shiraz, I.R. Iran
autor
- Department of Electrical Engineering, Firouzabad Higher Education Center, Shiraz University of Technology, Shiraz, I.R. Iran
Bibliografia
- [1] Kabalcı E., Review on novel single-phase grid-connected solar inverters: Circuits and control methods, Solar Energy, vol. 198, pp. 247–274 (2020), DOI: 10.1016/j.solener.2020.01.063.
- [2] Manoharan P. et al., Improved perturb and observation maximum power point tracking technique for solar photovoltaic power generation systems, IEEE Systems Journal, vol. 15, no. 2, pp. 3024–3035 (2020), DOI: 10.1109/JSYST.2020.3003255.
- [3] Abdel-Salam M., El-Mohandes M.T., Goda M., An improved perturb-and-observe based MPPT method for PV systems under varying irradiation levels, Solar Energy, vol. 171, pp. 547–561 (2018), DOI: 10.1016/j.solener.2018.06.080.
- [4] Shang L., Guo H., Zhu W., An improved MPPT control strategy based on incremental conductance algorithm, Protection and Control of Modern Power Systems, vol. 5, no. 2, pp. 1–8 (2020), DOI: 10.1186/s41601-020-00161-z.
- [5] Singh P., Shukla N., Gaur P., Modified variable step incremental-conductance MPPT technique for photovoltaic system, International Journal of Information Technology, vol. 13, pp. 2483–2490 (2021), DOI: 10.1007/s41870-020-00450-8.
- [6] Harrison A., Alombah N.H., de Dieu Nguimfack Ndongmo J., A New Hybrid MPPT Based on Incremental Conductance-Integral Backstepping Controller Applied to a PV System under Fast Changing Operating Conditions, International Journal of Photoenergy, vol. 2023, no. 1, 9931481 (2023), DOI: 10.1155/2023/9931481.
- [7] Ali M.N., Mahmoud K., Lehtonen M., Darwish M.M., An efficient fuzzy-logic based variable step incremental conductance MPPT method for grid-connected PV systems, IEEE Access, vol. 9, pp. 26420–26430 (2021), DOI: 10.1109/ACCESS.2021.3058052.
- [8] Mahmod Mohammad A.N., Mohd Radzi M.A., Azis N., Shafie S., Atiqi Mohd Zainuri M.A., An enhanced adaptive perturb and observe technique for efficient maximum power point tracking under partial shading conditions, Applied Sciences, vol. 10, no. 11, 3912 (2020), DOI: 10.3390/app10113912.
- [9] Guo B., Optimization design and control of single-stage single-phase PV inverters for MPPT improvement, IEEE Transactions on Power Electronics, vol. 35, no. 12, pp. 13000–13016 (2020), DOI: 10.1109/TPEL.2020.2990923.
- [10] Vairavasundaram I., Varadarajan V., Pavankumar P.J., Kanagavel R.K., Ravi L., Vairavasundaram S., A review on small power rating PV inverter topologies and smart PV inverters, Electronics, vol. 10, no. 11, 129 (2021), DOI: 10.3390/electronics10111296.
- [11] Kolantla D., Mikkili S., Pendem S.R., Desai A.A., Critical review on various inverter topologies for PV system architectures, IET Renewable Power Generation, vol. 14, no. 17, pp. 3418–3438 (2020), DOI: 10.1049/iet-rpg.2020.0317.
- [12] Sahoo S.K., Sukchai S., Yanine F.F., Review and comparative study of single-stage inverters for a PV system, Renewable and Sustainable Energy Reviews, vol. 91, pp. 962–986 (2018), DOI: 10.1016/j.rser.2018.04.063.
- [13] Elallali A., Abouloifa A., Lachkar I., Taghzaoui C., Giri F., Mchaouar Y., Nonlinear control of grid-connected PV systems using active power filter with three-phase three-level NPC inverter, IFAC PapersOnLine, vol. 55, no. 12, pp. 61–66 (2022), DOI: 10.1016/j.ifacol.2022.07.289.
- [14] Daravath R., Sandepudi S.R., Control of multifunctional inverter to improve power quality in grid-tied solar photo voltaic systems, International Journal of Emerging Electric Power Systems, vol. 24, no. 6, pp. 743–754 (2023), DOI: 10.1515/ijeeps-2022-0117.
- [15] Wang J., Sun K., Wu H., Zhang L., Zhu J., Xing Y., Quasi-two-stage multifunctional photovoltaic inverter with power quality control and enhanced conversion efficiency, IEEE Transactions on Power Electronics, vol. 35, no. 7, pp. 7073–7085 (2019), DOI: 10.1109/TPEL.2019.2956940.
- [16] Naamane D., Laid Z., Fateh M., Power quality improvement based on third-order sliding mode direct power control of microgrid-connected photovoltaic system with battery storage and nonlinear load, Iranian Journal of Science and Technology, Transactions of Electrical Engineering, vol. 47, no. 4, pp. 1473–1490 (2023), DOI: 10.1007/s40998-023-00627-4.
- [17] Safa A., Berkouk E.M., Messlem Y., Gouichiche A., A robust control algorithm for a multifunctional grid tied inverter to enhance the power quality of a microgrid under unbalanced conditions, International Journal of Electrical Power & Energy Systems, vol. 100, pp. 253–264 (2018), DOI: 10.1016/j.ijepes.2018.02.042.
- [18] Dehkordi N.M., Sadati N., Hamzeh M., A robust backstepping high-order sliding mode control strategy for grid-connected DG units with harmonic/interharmonic current compensation capability, IEEE Transactions on Sustainable Energy, vol. 8, no. 2, pp. 561–572 (2016), DOI: 10.1109/TSTE.2016.2611383.
- [19] Utkin V.I., Sliding mode control design principles and applications to electric drives, IEEE Transactions on Industrial Electronics, vol. 40, no. 1, pp. 23–36 (1993), DOI: 10.1109/41.184818.
- [20] Komurcugil H., Biricik S., Bayhan S., Zhang Z., Sliding mode control: Overview of its applications in power converters, IEEE Industrial Electronics Magazine, vol. 15, no. 1, pp. 40–49 (2020), DOI: 10.1109/MIE.2020.2986165.
- [21] Utkin V., Lee H., Chattering problem in sliding mode control systems, in International Workshop on Variable Structure Systems, VSS’06, IEEE, pp. 346–350 (2006), DOI: 10.1016/j.arcontrol.2007.08.001.
- [22] Levant A., Sliding order and sliding accuracy in sliding mode control, International Journal of Control, vol. 58, no. 6, pp. 1247–1263 (1993), DOI: 10.1080/00207179308923053.
- [23] Ze K. et al., Design of super twisting sliding mode controller for a three-phase grid-connected photovoltaic system under normal and abnormal conditions, Energies, vol. 13, no. 15, 3773 (2020), DOI: 10.3390/en13153773.
- [24] Lu J., Savaghebi M., Ghias A.M., Hou X., Guerrero J.M., A reduced-order generalized proportional integral observer-based resonant super-twisting sliding mode control for grid-connected power converters, IEEE Transactions on Industrial Electronics, vol. 68, no. 7, pp. 5897–5908 (2020), DOI: 10.1109/TIE.2020.2998745.
- [25] Gonzalez T., Moreno J.A., Fridman L., Variable gain super-twisting sliding mode control, IEEE Transactions on Automatic Control, vol. 57, no. 8, pp. 2100–2105 (2011), DOI: 10.1109/TAC.2011.2179878.
- [26] Shen X. et al., High-performance second-order sliding mode control for NPC converters, IEEE Transactions on Industrial Informatics, vol. 16, no. 8, pp. 5345–5356 (2019), DOI: 10.1109/TII.2019.2960550.
- [27] Deffaf B., Hamoudi F., Debdouche N., Amor Y.A., Medjmadj S., Super-twisting Sliding Mode Control for a Multifunctional Double Stage Grid-connected Phoovoltaic System, Advances in Electrical and Electronic Engineering, vol. 20, no. 3, 240 (2022), DOI: 10.15598/aeee.v20i3.4454.
- [28] Dehghani M., Mardaneh M., Shafiei M.H., Sliding mode control for load harmonics compensation and PV voltage regulation in a grid-tied inverter through a single-stage MPPT, in 2020 IEEE 28th Iranian Conference on Electrical Engineering (ICEE), Tabriz, Iran, pp. 1–6 (2020), DOI: 10.1109/ICEE50131.2020.9260854.
- [29] Cortajarena J.A., Barambones O., Alkorta P., Cortajarena J., Sliding mode control of an active power filter with photovoltaic maximum power tracking, International Journal of Electrical Power & Energy Systems, vol. 110, pp. 747–758 (2019), DOI: 10.1016/j.ijepes.2019.03.070.
- [30] Del Pizzo A., Di Noia L.P., Meo S., Super twisting sliding mode control of smart-inverters gridconnected for PV applications, in 2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA), pp. 793–796 (2017), DOI: 10.1109/ICRERA.2017.8191168.
- [31] Levant A., Higher-order sliding modes, differentiation and output-feedback control, International Journal of Control, vol. 76, no. 9–10, pp. 924–941 (2003), DOI: 10.1080/0020717031000099029.
- [32] Barth A., Reichhartinger M., Reger J., Horn M., Wulff K., Lyapunov-design for a super-twisting sliding-mode controller using the certainty-equivalence principle, IFAC-PapersOnLine, vol. 48, no. 11, pp. 860–865 (2015), DOI: 10.1016/j.ifacol.2015.09.298.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-711a3a5f-43a1-495b-9c20-35047ee74a38
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.