Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article presents the results of research on the development of a method for improving the positioning accuracy of an UAV equipped with a single-frequency GPS receiver for determining the linear elements of exterior orientation in aerial photogrammetry. Thus, the paper presents a computational strategy for improving UAV position determination using the SPP code method and the products of the IGS service. The developed algorithms were tested in two independent research experiments performed with the UAV platform on which an AsteRx-m2 UAS single-frequency receiver was installed. As a result of the experiments, it was shown that the use of IGS products in the SPP code method made it possible to improve the accuracy of the linear elements to the level of about ±2.088 m for X coordinate, ±1.547 m for Y coordinate, ±3.712 m for Z coordinate. The paper also shows the trend of changes in the obtained accuracy in determining linear elements of exterior orientation in the form of a linear regression function. Finally, the paper also applies the SBAS corrections model for the improvement of UAV position calculation and determination of linear elements of exterior orientation. In this case, the improvement in the accuracy of determining the linear elements of exterior orientation is about ±1.843 m for X coordinate, ±1.658 m for Y coordinate, ±7.930 m for Z coordinate. As the obtained test results show, the use of IGS products and SBAS corrections in the SPP code method makes it possible to improve the determination of UAV positions for the use in aerial photogrammetry.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
441--459
Opis fizyczny
Bibliogr. 59 poz., tab., wykr., wzory
Twórcy
autor
- Polish Air Force University, Institute of Navigation, Dywizjonu 303/35 Street, 08-521 Dęblin, Poland
autor
- Military University of Technology, Faculty of Civil Engineering and Geodesy, Department of Imagery Intelligence, gen. S. Kaliskiego 2 Street, 00-908 Warsaw, Poland
autor
- Polish Air Force University, Institute of Navigation, Dywizjonu 303/35 Street, 08-521 Dęblin, Poland
autor
- University of Warmia and Mazury, Faculty of Geoengineering, M. Oczapowskiego 2 Street, 10-724 Olsztyn, Poland
Bibliografia
- [1] Udin, W. S., & Ahmad, A. (2014, February). Assessment of photogrammetric mapping accuracy based on variation flying altitude using unmanned aerial vehicle. In IOP conference series: earth and environmental science (Vol. 18, No. 1, p. 012027). IOP Publishing. https://doi.org/10.1088/1755-1315/18/1/012027
- [2] Elkhrachy, I. (2021). Accuracy assessment of low-cost unmanned aerial vehicle (UAV) photogrammetry. Alexandria Engineering Journal, 60(6), 5579-5590. https://doi.org/10.1016/j.aej.2021.04.011
- [3] Sung, H., Chong, K., & Lee, C. N. (2019). Accuracy analysis of low-cost UAV photogrammetry for road sign positioning. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 37(4), 243-251. https://doi.org/10.7848/ksgpc.2018.36.6.565
- [4] Wierzbicki, D., Kędzierski, M., & Fryskowska, A. (August, 2015). Assessment of the influence of UAV image quality on the orthophoto production. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Canada. https://doi.org/10.5194/isprsarchives-XL-1-W4-1-2015
- [5] Huang, S., Zhang, Z., Ke, T., Tang, M., & Xu, X. (2015). Scanning Photogrammetry for Measuring Large Targets in Close Range. Remote Sensing, 7, 10042-10077. https://doi.org/10.3390/rs70810042
- [6] Ziobro, J. (2004). Efficiency of additional parameters in aerotriangulation. Prace Instytutu Geodezji i Kartografii, L(108), 145-154. (in Polish)
- [7] Kacprzak, M. (2016). Application of GPS receivers and inertial measurement units to photo acquisition with use unmanned aerial vehicle (UAV). Prace Instytutu Lotnictwa, 3(244), 267-276. https://doi.org/10.5604/05096669.1226159 (in Polish)
- [8] Wierzbicki, D. (September, 2017). The prediction of position and orientation parameters of UAV for video imaging. In The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Germany, 407-413. https://doi.org/10.5194/isprs-archives-XLII-2-W6-407-2017
- [9] Wierzbicki, D. (2018). Estimation of angle elements of exterior orientation for UAV images based on ins data and aerial triangulation processing. In 17th International Scientific Conference Engineering for Rural Development: proceedings (pp. 1990-1996). https://doi.org/10.22616/ERDev2018.17.N054
- [10] Jędryczka, R. (2000). Automation of the process of determining elements of external orientation. Archiwum Fotogrametrii, Kartografii i Teledetekcji, 10, 44-1:44-9. (in Polish)
- [11] Jędryczka, R. (2002). GPS/IMU measurements and determination of elements of external orientation. Archiwum Fotogrametrii, Kartografii i Teledetekcji, 12, 162-171. (in Polish)
- [12] Wierzbicki, D., & Krasuski, K. (2020). Determining the Elements of Exterior Orientation in Aerial Triangulation Processing Using UAV Technology. Communications - Scientific letters of the University of Zilina, 22(1), 15-24. https://doi.org/10.26552/com.C.2020.1.15-24
- [13] Butowtt, J., & Kaczyński, R. (2010). Photogrammetry. Publishing House of the Military University of Technology. (in Polish)
- [14] Hosseinpoor, H. R., Samadzadegan, F., & DadrasJavan, F. (2016). Pricise target geolocation and tracking based on UAV video imagery. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 41, 243-249. https://doi.org/10.5194/isprs-archives-XLI-B6-243-2016
- [15] Santerre, R., Pan, L., Cai, C., & Zhu, J. (2014). Single Point Positioning Using GPS, GLONASS and BeiDou Satellites. Positioning, 5, 605, 107-114. https://doi.org/10.4236/pos.2014.54013
- [16] Ashraf, S., Aggarwal, P., Damacharla, P., Wang, H., Javaid, A. Y., & Devabhaktuni, V. (2018). A low-cost solution for unmanned aerial 607 vehicle navigation in a global positioning system-denied environment. International Journal of Distributed Sensor Networks, 608, 14(6), 1-17. https://doi.org/10.1177/1550147718781750
- [17] Krasuski, K., Wierzbicki, D., & Bakuła, M. (2021). Improvement of UAV Positioning Performance Based on EGNOS¸SDCM Solution. Remote Sensing, 13(13), 2597. https://doi.org/10.3390/rs13132597
- [18] Akpinar, B. (2021). Performance of UAV-Based Digital Orthophoto Generation for Emergency Response Applications. TEM Journal, 10(4), 1721-1727. https://doi.org/10.18421/TEM104-31
- [19] Szywalski, P., & Waindok, A. (2020). Practical Aspects of Design and Testing Unmanned Aerial Vehicles. Acta Mechanica et Automatica, 14(1), 50-58. https://doi.org/10.2478/ama-2020-0008
- [20] Hematulin, W., Kamsing, P., Torteeka, P., Somjit, T., Phisannupawong, T., & Jarawan T. (2023). Trajectory Planning for Multiple UAVs and Hierarchical Collision Avoidance Based on Nonlinear Kalman Filters. Drones, 7, 142. https://doi.org/10.3390/drones7020142
- [21] Li, K., Ma, H., & Wang, D. (September, 2021). Design of UAV navigation algorithm in single satellite environment based on high precision timing. In 32nd Congress of the International Council of the Aeronautical Sciences, 6-11, China.
- [22] Cisneros, I., Yin, P., Zhang, J., Choset, H., & Scherer, S. (2022). ALTO: A Large-Scale Dataset for UAV Visual Place Recognition and Localization. The International Journal of Robotics Research, XX(X). https://doi.org/10.48550/ARXIV.2207.12317
- [23] Haddadi Amlashi, H., Samadzadegan, F., Dadrass Javan, F., & Savadkouhi, M. (2020). Comparing the accuracy of GNSS positioning variants for uav based 3D map generation. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 43, 443-449. https://doi.org/10.5194/isprs-archives-XLIII-B1-2020-443-2020
- [24] Burdziakowski, P., & Bobkowska, K. (April, 2017). Accuracy of a low-cost autonomous hexacopter platforms navigation module for a photogrammetric and environmental measurements. In 10th International Conference “Environmental Engineering”, Lithuania. https://doi.org/10.3846/enviro.2017.173
- [25] European GNSS Agency (GSA). (2020). European Global Navigation Satellite Systems (EGNSS) for Drones Operations [White paper]. https://doi.org/10.2878/52219
- [26] Jimenez-Baňos, D., Powe, M., Raj Matur, A., Toran, F., Flament, D., & Chatre, E. (September, 2011). EGNOS Open Service guidelines for receiver manufacturers. In Proceedings of the 24th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2011) (pp. 2505-2512).
- [27] Isik, O. K., Hong, J., Petrunin, I., & Tsourdos, A. (2020). Integrity Analysis for GPS-Based Navigation of UAVs in Urban Environment. Robotics, 9(3), 66. https://doi.org/10.3390/robotics9030066
- [28] Meng, L., Yang, L., Ren, S., Tang, G., Zhang, L., Yang, F., & Yang, W. (2021). An Approach of Linear Regression-Based UAV GPS Spoofing Detection. Wireless Communications and Mobile Computing, 2021, 5517500. https://doi.org/10.1155/2021/5517500
- [29] Basan, E., Makarevich, O., Lapina, M., & Mecella, M. (October, 2021). Analysis of the Impact of a GPS Spoofing Attack on a UAV. In Proceedings of the International Workshop on Advanced in Information Security Management and Applications (AISMA 2021) (pp. 6-16).
- [30] Wei, X., Sun, C., Lyu, M., Song, Q., & Li, Y. (2022). CONSTDET: Control Semantics-Based Detection for GPS Spoofing Attacks on UAVs. Remote Sensing, 14(21), 5587. https://doi.org/10.3390/rs14215587
- [31] Grunwald, G., Ciećko, A., Kozakiewicz, T., & Krasuski, K. (2023). Analysis of GPS/EGNOS Positioning Quality Using Different Ionospheric Models in UAV Navigation. Sensors, 23(3), 1112. https://doi.org/10.3390/s23031112
- [32] Pochwała, S., Gardecki, A., Lewandowski, P., Somogyi, V., & Anweiler, S. (2020). Developing of Low-Cost Air Pollution Sensor - Measurements with the Unmanned Aerial Vehicles in Poland. Sensors, 20(12), 3582. https://doi.org/10.3390/s20123582
- [33] Ahmed, S., El-Shazly, A., Abed, F., & Ahmed, W. (2020). The Influence of Flight Direction and Camera Orientation on the Quality Products of UAV-Based SfM-Photogrammetry. Applied Sciences, 12(20), 10492. https://doi.org/10.3390/app122010492
- [34] Zhao, X., Pu, F., Wang, Z., Chen, H., & Xu, Z. (2019). Detection, Tracking, and Geolocation of Moving Vehicle from UAV Using Monocular Camera. IEEE Access, 7, 101160-101170. https://doi.org/10.1109/ACCESS.2019.2929760
- [35] Elsheshtawy, A. M., & Gavrilova, L. A. (2021). Improving Linear Projects Georeferencing to Create Digital Models Using UAV Imagery. In E3S Web of Conferences (Vol. 310, p. 04001). EDP Sciences. https://doi.org/10.1051/e3sconf/202131004001
- [36] Forlani, G., Diotri, F., Morra di Cella, U., & Roncella, R. (2020). UAV Block Georeferencing and Control by On-Board GNSS Data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. XLIII-B2-2020, 9-16. https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-9-2020
- [37] Zhang, H., Aldana-Jague, E., Clapuyt, F., Wilken, F., Vanacker, V., & Van Oost, K. (2019). Evaluating the potential of post-processing kinematic (PPK) georeferencing for UAV-based structure-from-motion (SfM) photogrammetry and surface change detection. Earth Surface Dynamics, 7(3), 807-827. https://doi.org/10.5194/esurf-7-807-2019
- [38] Chiang, K. W., Tsai, M. L., & Chu, C. H. (2012). The development of an UAV borne direct georeferenced photogrammetric platform for ground control point free applications. Sensors, 12(7), 9161-9180. https://doi.org/10.3390/s120709161
- [39] Sanyal, S., Bhushan, S., & Sivayazi, K. (2020, January). Detection and location estimation of object in unmanned aerial vehicle using single camera and GPS. In 2020 First International Conference on Power, Control and Computing Technologies (ICPC2T) (pp. 73-78). IEEE. https://doi.org/10.1109/ICPC2T48082.2020.9071439
- [40] Sun, H., Li, L., Ding, X., & Guo, B. (2016). The precise multimode GNSS positioning for UAV and its application in large scale photogrammetry. Geo-spatial Information Science, 19(3), 188-194. https://doi.org/10.1080/10095020.2016.1234705
- [41] Grenzdörffer, G. J., Engel, A., & Teichert, B. (2008). The photogrammetric potential of low-cost UAVs in forestry and agriculture. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 31(B3), 1207-1214.
- [42] Diep, J., Gómez-Casco, D., Villamide, X. O., Swinden, R. D., & Crosta, P. (2022, April). Performance Analysis of Mass-Market GNSS Receivers in UAV Applications. In 2022 10th Workshop on Satellite Navigation Technology (NAVITEC) (pp. 1-8). IEEE. https://doi.org/10.1109/NAVITEC53682.2022.9847551
- [43] Noviello, C., Esposito, G., Fasano, G., Renga, A., Soldovieri, F., & Catapano, I. (2020). Small-UAV radar imaging system performance with GPS and CDGPS based motion compensation. Remote Sensing, 12(20), 3463. https://doi.org/10.3390/rs12203463
- [44] Elamin, A., Abdelaziz, N., & El-Rabbany, A. (2022). A GNSS/INS/LiDAR Integration Scheme for UAV-Based Navigation in GNSS-Challenging Environments. Sensors, 22(24), 9908. https://doi.org/10.3390/s22249908
- [45] Schaer, S. (1999). Mapping and predicting the Earth’s ionosphere using Global Positioning System [Doctoral dissertation, University of Berne].
- [46] Le, A. Q., & Tiberius, C. (2007). Single-frequency precise point positioning with optimal filtering. GPS Solutions, 11(1), 61-69. https://doi.org/10.1007/s10291-006-0033-9
- [47] Krasuski, K. (2019). The research of accuracy of aircraft position using SPP code method [Doctoral dissertation, Warsaw University of Technology] (in Polish)
- [48] Nie, Z., Zhou, P., Liu, F., Wang, Z., & Gao, Y. (2019). Evaluation of orbit, clock and ionospheric corrections from five currently available SBAS L1 services: methodology and analysis. Remote Sensing, 11(4), 411. https://doi.org/10.3390/rs11040411
- [49] Molina, P., Colomina, I., Vitoria, T., Freire, P., Skaloud, J., Kornus, W., Mata, R., & Aguilera, C. (May, 2011). The CLOSE-SEARCH project UAV-based search operations using thermal imaging and EGNOS-SoL navigation. In Proceedings of the GeoInformation for Disaster Management Conference (Gi4DM 2011), Antalya, Turkey, 3-7.
- [50] Wierzbicki, D., & Krasuski, K. (2016). Determination the coordinates of the projection center in the digital aerial triangulation using data from Unmanned Aerial Vehicle. Aparatura Badawcza i Dydaktyczna, 2016(3), 127-134. (in Polish)
- [51] Wierzbicki, D., & Krasuski, K. (2016). The correction methods of heading, pitch, roll rotation angles with using UAV. Modelowanie Inżynierskie, 27(58), 132-138. (in Polish)
- [52] Osada, E. (2001). Geodesy. Oficyna Wydawnicza Politechniki Wrocławskiej. (in Polish)
- [53] CODE LAC Website. (2023). http://ftp.aiub.unibe.ch/CODE/
- [54] Takasu, T. (2013). RTKLIB ver. 2.4.2 Manual, RTKLIB: An Open Source Program. Package for GNSS Positioning. http://www.rtklib.com/prog/manual_2.4.2.pdf
- [55] Specht, M., Specht, C., Stateczny, A., Burdziakowski, P., Dąbrowski, P., & Lewicka, O. (2022). Study on the Positioning Accuracy of the GNSS/INS System Supported by the RTK Receiver for Railway Measurements. Energies, 15, 4094. https://doi.org/10.3390/en15114094
- [56] MAGNET Tools Website. (2023). https://www.topconpositioning.com/office-software-and-services/survey-software/magnet-tools
- [57] Scilab Website. (2023). https://www.scilab.org/
- [58] Scibbr Website, (2023). https://www.scribbr.com/statistics/coefficient-of-determination
- [59] Tabti, L., Kahlouche, S., Benadda, B., & Beldjilali, B. (2020). Improvement of single-frequency GPS positioning performance based on EGNOS corrections in Algeria. The Journal of Navigation, 73(4), 846-860. https://doi.org/10.1017/S037346331900095X
Uwagi
1. This research was supported by the Military University of Technology, Faculty of Civil Engineering and Geodesy and the Polish Air Force University, Institute of Navigation in the year 2023.
2. Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7110461a-9650-4086-95a4-aa445d2ccac9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.