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Abstract. For a class of sub-elliptic equations on Heisenberg group HY with Hardy type
singularity and critical nonlinear growth, we prove the existence of least energy solutions
by developing new techniques based on the Nehari constraint. This result extends previous
works, e.g., by Han et al. [Hardy-Sobolev type inequalities on the H-type group, Manuscripta
Math. 118 (2005), 235-252].
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1. INTRODUCTION

This paper is concerned with a class of sub-elliptic equations on the Heisenberg group
having a nonlinearity with critical nonlinear growth and a singularity of the form

|21

_ e
=3 v

—Appu— A ufP e = S [ufP %y in HV\{0}. (1.1)
p S

We begin with some basic definitions and useful results. The Heisenberg group
HY, whose points will be denoted by ¢ = (2,t) = (z,y,1), is identified with the Lie

group (R?V*1 o) with composition law defined by
§of = (242 t+t +2((2',y) — (x,9))), (1.2)

where (-, ) denotes the inner product in R¥. And for ¢ € HY, the left translations on
HY are defined by
e HY S HY,  re(¢) =¢o¢,
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For &,¢ € HY, the distance between & and ¢’ is defined by

Bl

¢, &) = ((Iw — 2Pty —y2) (-t —2((y) - (@ y>)2)

For convenience, the distance of & € HY to the origin is denoted by p. For p > 0,
a family of dilation on H” is defined by

6 HN - HYN,  Su(x,y,t) = (ux, py, p*t). (1.3)

The homogeneous dimension with respect to this dilation is @ = 2N +2. Bases for the
corresponding Lie algebra of the Heisenberg group (R?V*1! o) are the left invariant
vector fields of the form

0 0 0 0
— 4+ 2yi=—, Y= — — 2z, — j=1,2,...,N. 1.4
al‘j + 2y; at’ j X, at’ J 5 4y s ( )

X =
J 8:[/]

Denote the horizontal gradient by Vg = (X1,..., XN, Y1,...,YN) and write
N
diVH(Vl, Vo, VQN) = Z(ijj + i/jVN-&-j)-
j=1

In this way, the sub-Laplacian A g is expressed by
N
AH—dIVH VH ZX2+Y2
j=1

And for p > 1, the sub-p-Laplacian Ag , is defined as
AHypu = diVH(‘VHU|p72VHU).

The space Dy* (HN) is defined as the closure of C5°(H) under the norm ||u||Dé,p =

(IHN |VHu\pdf)1/p. The Hardy inequality on Dé’p(HN) is known as

|27 ul?

PP

HN HN

dg,

where A, = ( ) is the best constant in the above inequality for 1 < p < @,
see [12]. For 0 p, the following Hardy-Sobolev inequality

(/z|u

HN

p*(s P (s)
< / VauPde, weDLPEY),
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holds for some positive constant My, see [12] for detailed proofs. In here,
pi(s) = ”(57:;) is called the critical exponent of the embedding Dy (HN) <

L) (HN, |;2|: d¢). On ’Dé’p(HN), we define the functionals

|2 I”\UI” |2|® \u
p
/'v uffds = PP (s /

PlylP 81| P+ ()
I(u) = /(V ulPd¢ — )\|Z| |“| _ |u2‘s )df.

14
HN

p*(s

and

Then from the Hardy inequality and the Hardy-Sobolev inequality, one knows that
both L and I are well defined. Denote the Nehari set by

N = {u € DEPEN\{0}: I(u) = o}
and define
d=inf{L(u): ue€ A}. (1.5)
Definition 1.1. Let I' be the set of solutions of (1.1). Namely,

r= {¢ € DLP(HN): L(¢) = 0 and ¢ # o} .
Let G be the set of least energy solutions of (1.1), that is,
G={uel : L(u) < L(v) for any v eT}.

The following Theorem 1.2 is the main result of the present paper.

Theorem 1.2. If1 <p < Q, —o0 < A< A, and 0 < s < p, then there is ¢ € N
such that L(p) = d. Moreover, ¢ is a least energy solution of (1.1).

We recall that a counterpart of (1.1) on R is of the form

1

EE

—div(|Vu[P~?Vu) — JulP~%u = luP" =2,z in RV\{0}, (1.6)

[]?

withl <p < N, —oco < A< ((N—p)/p)?, p*(s) = p(N—3s)/(N— p)anduGD ’p(RN)
Here Dy”(RY) is defined as the closure of Cs°(RY) under the norm [l ppor vy =

(Jpn |Vu|Pdz)'/P. The existence and non-existence and multiplicity of solutions of
(1.6) have been studied in the past several years. For instance, in the case of p = 2,
A< ((N—2)/2)? and 0 < s < 2, these results can be found in [8,22]. While for the
case of 1 <p < N,0 < X< ((N—p)/p)? and 0 < s < p, we refer the interested
readers to the papers of [1,2,20]. Related results can be found also in [18]. In the
setting of the Heisenberg group H”. Jerison et al. [15] firstly proved that

Q+2

—Agw=w?2, w>0,weDy*HY) (1.7)
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possesses a solution

Ky
2+ 1+ |z + |y2)2) 5

wO(x7y7t) =

where K is a suitable positive constant. Moreover, every solution to (1.7) takes the
form
Q-2 _1
Wpg =7 wWoody 0T .
Since the famous paper [15], there are a lot of papers dealing with the semilinear
Dirichlet problem on the Heisenberg group. For instance, Citti [9] studies the equation
Q+2

—Agut+au=u?2 in Q wu=0 on 09, (1.8)

where (2 is a smooth bounded domain in HY. Since (1.8) involves a nonlinearity of
critical growth, Citti [9] has proven a representation formula for the Palais-Smale
sequence and then proves the existence of positive solutions of (1.8) under suitable
conditions for a. Some results of Liouville type for semilinear equations on the Heisen-
berg group have been studied by Birindelli et al. [5,6]. Uguzzoni [23]| has proven a
non-existence theorem for a semilinear Dirichlet problem involving critical nonlinear-
ity on the half space of the Heisenberg group. Very recently, Han et al. [12] have
proven a class of Hardy-Sobolev type inequalities on the H-type group and get the
existence of a nontrivial solution of (1.1) in the case of A = 0. We also refer the
interested readers to [7] for other related results.

The equation (1.1) can be looked as a generalized model on the Heisenberg group
and Theorem 1.2 generalizes partially the previous work in [12]. Theorem 1.2 seems
to be the first existence result for the problem with double singularity and critical
growth. The method of proving Theorem 1.2 is variational. Note that somehow we
are facing the double critical case, since, for a bounded domain Q C HY and 0 € ©,
neither Dy (Q) — LP(1, ‘;T‘;dé) nor DyP(Q) — LP+()(Q, |:2|S d€) is compact. Hence
the standard variational argument can not be used directly. Our idea of proving
Theorem 1.2 is based on extending some techniques of the Nehari constraint used
in [19]. The detailed proof of Theorem 1.2 will be carried out in Section 2.

Throughout this paper all integrals are taken over HYV unless stated otherwise.
(- '>Dé,p denotes the dual product between D3P (HY) and its dual space. The norm
in L*(HY) is denoted by | - ||+ and we define Ex(-) = [ (|Va - [P — AL e,
Positive constants are denoted by C or C; (j = 1,2,...), whose values may be different
at different places.

2. EXISTENCE OF LEAST ENERGY SOLUTIONS OF (1.1)

This section is devoted to the proof of Theorem 1.2. We will always assume that the
assumptions of Theorem 1.2 hold. Keep the notation of F(-) in mind. We firstly give
several lemmas which will be used in what follows.
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Lemma 2.1. For any u € Dy?(HN)\{0}, there is a unique 6,, > 0 such that f,u € N.
Moreover, if I(u) < 0, then 0 < 6, < 1.

Proof. Since for 6 > 0,
oP B gp=(s) |2|® [u|P=(5)

L) = = Ba() -5 g
HN

dg,

one obtains from direct computation that there is a

|2 u

1 D« (s) _m

such that 6,u € N. The structure of L(fu) implies that this 6, is unique for each
u € DyP(HN)\{0}. From the expression

e
I(u) - Ek(u) - p25 )
we know that if I(u) < 0, i.e.,
2|8 | |P*(5)
B < [ E e
then 0 < 6, < 1. O

Lemma 2.2. The set N is a manifold and there exists co > 0 such that for allu € N,
Ey(u) > cp.

Proof. In the first place, we point out that N # ) follows from the previous lemma.

For any u € N,
o=

p23

(1), )y = pEs() ~ 1 (5) [ it =

z|® up*(s)
- <p—p*<s>>/—‘ | e <o

which implies that A/ is a manifold. In the second place, from the Hardy-Sobolev
inequality, one obtains that

Px(s)

s _px(s)
Ej(u) = / '[’;'slup*@d&Mo g (/ |vHu|pd5>

If A < 0, then
/\VHU|pd§ < Ex(u).

—1
/\VHu|pd§ S (1 - /i\> E)\(’U,)

If 0 <A <Ay, then
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Therefore for —oo < A < A;,, one obtains that

px(s)

e /9N — A\ P pu(8)
B <3 (B53) T )
P

Therefore we can deduce that there is a ¢g > 0 such that Ej(u) > co. O

Lemma 2.3. If v € N and d = L(v), then v is a least energy solution of the
equation (1.1).

Proof. Since v is a minimizer of the minimum d, we obtain from the Lagrange multi-
plier rule that there is # € R such that for any ¢ € Dy? (HN),

<L/(U), ’l/)>1)(1]’1’ = 0<I/('U)a 7;/}>D(1]*T"
Note that

p*(S)dg -

100y = pEr(0) ~e(5) [
~ - p.) [ SO <o

and <L/(U),U>D(1],p = I(v) = 0. We get that § = 0. Hence L'(v) = 0. According to
Definition 1.1, one knows easily that v is a least energy solution of (1.1). O

Lemma 2.4. If u € DyP(HY) and h € C3°(HY), then

s 2A
[ R
HN P

p*@dgg Mo—l (AZ’_:‘> Ex(|h]u)x
b —

y 22,
p23

supp(h)

px(s)—p

D (s)
p*(S)d§> .

Proof. Note that for A < A, one obtains from the Hardy inequality and an argument
similar to those in the proof of Lemma 2.2 that

20, — A
/|VHu|pd§ < ( — ) Ey(u). (2.1)
Ay
Using the Hélder inequality, one can obtain that
px(s)—p
L px(s)
| p«(8) |1 |P ‘ | P (8) =) | | ps(8)
55 [ulP P [hPdE < S| hulP=*d¢ ~lulP+ ¥ dg <
supp(h)
px(s)—p

P (s)
_ z
<vp [ Wuluopa | [ 5 =P e ae
supp(h)

Combining this with (2.1), one deduces the conclusion of Lemma 2.4. O
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Lemma 2.5 ([11]). For any smooth bounded domain Q C HY, the inclusion
Dy? () < LP(Q) is compact.

Lemma 2.6. If h € Cg°(HYN), then for any u € Dy* (HN), |h[Pu € DY (HY).

Proof. Since Cg°(HY) is dense in Dy (HN), there is a sequence (1, )nen C C5° (HN

)
such that 1, — u strongly in Dy* (HY). Using Lemma 2.5 and the fact that supp(h)
is a compact subset of H”, one can get the conclusion by a direct calculation. O

Lemma 2.7. For every u € N, there is g > 0 and a differentiable functional p(w)
defined for w € DyP(HN) with ||w||Dé,p < g9 such that p(0) = 1, p(w)(u —w) € N
and for each v € DVP(HY),

px(s)—2

<E$\(u)vw>pém —p*(s)f de
(p— 1)Ex(u) — (pa(s) — 1) [ EEL=O e

p25

(1'(0),¥) prv = : (2.2)

Proof. For yi> 0 and w € DyP(HY), we define a function

2l -

F(p,w) = pP~ Ex(u— w) — pp= )7 e

de.

Since u € N, we have F'(1,0) = I(u) = 0 and

2l — -

Fu(1,0) = (p = 1) Ex(u) — (p(s) = 1) 2

2|%|u — w|P+ ()
= (Pp*(s))/Hst'df <0.

¢ =

Applying the implicit function theorem at the point (1,0), we obtain a &g > 0 and
a differentiable functional = p(w) defined for w € Dy* (HN) such that u(0) = 1,
p(w)(u —w) € N. Moreover, from F(u(w), w) = 0, we obtain from direct calculation

that (2.2) holds. O
Theorem 2.8. Under the assumptions of Theorem 1.2, there is ¢ € N such that
d=L(¢).

Proof. The proof will be divided into several steps.

Step 1. Applying the Ekeland variational principle [3]| (see also [21]), one has a se-
quence (U, )neny C N and u, satisfies the following properties:

L(up) < d+ %, (2.3)

L(w) > L(uy,) — l||’w — Uy | for any w € Dé’p(HN). (2.4)
n

Since u,, € N, we know from the Hardy-Sobolev inequality that there are positive
constants Cy, Cy such that
Cl S ||un||Dé,p S CQ.
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Applying Lemma 2.7 to each u,, we get a constant ¢g,, and a differentiable function

fin = pin(w) defined for w € DyP(HY) with ||wHD(1],p < €on, such that u,(0) =1 and

(W) (up, —w) € N. By Lemma 2.2, Lemma 2.7 and the fact that I(u,) = 0, one has
03

|12, (0)]] DEP@mEN))* < Pe( 4 < Ca,
o ) = ) 1) By () — (pes) — 1) J L

where (Dy?(HN))* is the dual space of Dy (HY). Next, we prove that L' (u,) — 0 as
n — 00. Let 0 < € < gqp. Set we = v Wlth ||vHDé,p =1 and ve = pin(we)(un — we),
then v. € . Using Taylor expansion, we obtain that

e = vl = Llun) = L(v:) =
= (L), = 02} + 0l — vellpg) =

= (1 pa ) (L () ) + 2w )(E () o)y (29

+o(un = velpye) =

)

= epin(we) (L' (un),

prr + o(||wn — ’UEH’DS"’)'

Since
llwn — UEHD})JD <|1- /‘n(ws)|||“n||p(1)fp + Cselpn (we)|

and 4, (0) = 1, we obtain that

[t — vellprr — 1 (0
9

e—0 € e—0

< [(,0), ) 1.

+cmmwa0s

+ Cs < C.

Therefore dividing by e the inequality (2.5) and passing to the limit as ¢ — 0, we
deduce from the preceding inequality that there exists a positive constant Cg such

that o
<L/(un), /U>»Dé,p < Tw

Since v is arbitrary, one gets a sequence (uy)neny C A such that

L'(u,) =0, L(up,)—d as n— oo.

Step 2. From I(u,) = 0 and the Hardy inequality, one deduces from an argument
similar to those in the proof of Lemma 2.2 that there is a ¢g > 0 such that

) and choose Ry such that

P=(8)de > ¢y, (2.6)

Denote ¢ = MO(

px(s)
0 < Ry < min {CQ, (26) P—px(5) }
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and
P()de > R,.

: |2|*
limsup [ —-|u,
n— oo pee

[l
p28

B(0,ry)

Let r, > 0 be such that
un|P* ) d¢ = Ry,

Defining
Q-p
Unp, (f) =1t Uy (Tn.’b, ™Y, rrzlt)v

then there holds .
Ro= [ o
2

B(0,1)

Moreover, by direct calculation, one has

O T O = SN
P-(3) e — /I i

Therefore the functionals L and [ are invariant under the above mentioned transfor-
mation, i.e.,

and .
|Z| |~ D S)dg

L(ayn) = L(un) and  I(ty) = I(uy).
Note that if h € Dy?(HN), then for any r > 0, one has

o t
b= 5t h<x y ) € DyP(HN)
r’rr?

and HiL”DéJ’ = ||h||D(1),p. Hence for any ¢ € Dy* (HY), denoting
y —&p T t
wn =Tn ? h(ay72)7

we have that ¢, € Dé’p(HN) and ||z/v1n\|Dé,p = HwHDé,p. Moreover,

P2, g =

/ i

(un), Gn) ppo = (V)| ¥nllpre = o)l pr.r-

<L/(an)a¢>Dévp :/ |vHﬂn|p vHuanw )‘| | ‘ n|p 2~ 7/)) dé.*
(L

This proves that L'(u,) — 0 as n — oo.
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Step 3. Since (i, )nen is bounded in Dé’p (HY), we may assume that @, — ¢ weakly
in Dé’p(HN). We claim that ¢ # 0. Arguing by contradiction, we assume that ¢ = 0.
Then, we firstly point out that from Lemma 2.5, 4, — ¢ strongly in L7 (HY).

loc

Secondly, let h € C§°(H”) and supp(h) € B(0,1). Using the elementary inequality
||[A+ B|P — |A]P| < Ciz (JAP~'|B|+ |BJ?), for any A, B € R*Y,
we obtain that
[ (i) = i) ae| <

< C/ (PP~ PV B[] + [V o |2 P|]?) d€ <

<cC / IV bt [P, |dE + / | |PdE <

supp(h) supp(h)

<| [ wunri |t |
supp(h) supp(h)

+ / |G, |Pdé -0 as n — oo,

supp(h)

where we have used the assumption ¢ = 0, the fact that @, — ¢ strongly in LY (HY)
and (i )pen is bounded in DP (HN).
Therefore for n large enough, we proved that

/ Vs (Bl P = / WPV s P + o(1). (2.7)

Now using the fact that (L'(ay,), w>Dé,p = 0(1)H¢||Dé,p and substituting ¢ by |h|Pd,,
we get that

(L (@), B[P i) i = / IV it P2V b (100 1 (|1]?) + |BIPV gyt )~

p s
- / B g pinpas - / L g o) ot
p p*
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Combining this with (2.7), Lemma 2.4 and the choice of Ry, we obtain that
Ex([hlan) = o(V)|[[2["an || — / IV 1 P72V iV g (| Vi g+

EO
—g/;gMMWUMW&+wu>g

p—1 1
<| [ IWuipae [t |
supp(h) supp(h)
px(s)—p
Px(s
~ ~ ‘z|s ~ (s)
+ ¢Ex(|h|an) ﬁ\un P8l de +o(1) <

supp(h)

1
< SE(Bln) + o(1),

where we have used again the fact that @, — ¢ = 0 strongly in L} (HY) and

loc

(@in )nen is bounded in Dy? (HN). Tt follows that Ex (||, ) — 0 as n — co. Note that
for —oo < A < A,

Ap— A
[ atianyrde < (F2=50) Bl

which implies that [ |V (|h|G,)[Pdé — 0 as n — oco. So from the Hardy-Sobolev
inequality, we deduce that [ |;2| R, [P*+(*)d¢ — 0 as n — oo. From the choice of h,
one obtains that for each 0 < r < 1,

S
ﬁHh|ﬂn\p*(s)d§ —0 as n— oo.
p2s

B(0,r)

Next, choosing a function h such that supp(h) C B(,3) with £ € B(0,1), then
similar to the previous computation, one deduces that

p=1 1

B(bln) < | [ 19utalrdg | i |
supp(h) supp(h)
Px(s)—p
P (s
_ - s 1 -
+ ¢Ex(Jh|ty) / |p22|5 |1, P (2) dg +o(1) < §E>\(|h|un) +0(1),
supp(h)

where we have used the fact that p.(s) < Qp/(Q — p) and the locally compact em-
bedding from Dy?(Q) < LP+(*)(Q). Combining this with the previous discussion,
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P+(5)d¢ — 0 as n — oo. This is a contradiction.

hlin

one obtains that [p %
Therefore ¢ #£ 0.

Step 4. In this step, we will prove that there are some finite points {&1,...,&n}, such
that
in — ¢ strongly in - Dyt (HN\{0,&1,...,&m}). (2.8)

The proof of (2.8) will be divided into several steps. In the first place, from @, — ¢
weakly in Dy?(HY), one has that @, — ¢ a.e. in HY. Note that VHﬁn € (LP(HN))2N
and (|V giin [P~2V iy )nen is bounded in (LP' (HY))2Y with p/ = ~P-. We may assume

that there is 7 € (L? (HY))2N such that
IV i P2V i, — T weakly in  (L” (HV))?N

By letting n — oo, one gets immediately that
Al z|P|p|P—2 | b= (8)—2
/TV odf = /( 2| |¢| op | 210 = W) it (2.9)

holds for any ¢ € Dy (HY). Since (i, )nen is bounded in Dy? (HY), the concentration
compactness principle [16] (see also a refined version in [12]) implies that there is an
at most countable set J such that

(1) [Vau,|P —da > [VgolP + ngJ ajXe¢; + ®0Xo0,

(2) Z‘ |~ P(8) dp = %W p+(s) + Z]‘EJ BjXE_;’ + Boxo,

(3) o 2 Mo/, (ccp)
(4) 2p g |P = dy = 2p > 91 +70x0,

(5) Ap’Yo < ap,

where x¢ is the Dirac function at £. In the second place, we claim that J is a finite
set. Indeed, from (L/(ay,), go)Dé,p = 0(1)||<pHDé,p and choosing ¢ = v, one gets that

|V g, [Pap + an|vHan|p2vHaanw) d¢ =

:/( |Z\ | n|pw+ |Z| | n”*(S)z/J>d€+0( ). (2.10)
It is now deduced by letting n — oo that
/wda+/¢Tvad§: /deJr)\/wdfy. (2.11)
On the other hand, substituting ¢ by ¥¢ in (2.9), we have that
[ (orvmv+vrvus) = [ (\opu s Elgrciv)ae. 21z

Concentrating ¢ at §; (here and in the sequel, a function 1 is called “concentrating

at &7 if Y € Co(HY), ¥(€) = 1 for [ —&| < r, ¥(€) = 0 for [¢ — [ > 2r,
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N+1

[Vay| < 4@ and r small), we obtain from (2.11) and (2.12) that o; < g;.
Combining this with (3) of (CCP) one can deduce that

Q=s
either B; =0 or B; > M, ". (2.13)
Similarly, concentrating ¢ at &g = 0 in (2.11) and (2.12), we have that
ag — /\’}/0 S ,60. (214)

On the other hand, from the Hardy inequality and the Hardy-Sobolev inequality, there
is a positive constant My such that for any u € D(l)’p(JHIN)7

D
|2[P |2]° $) e\
/ <VHu|p — Ap?pw d¢ > M,y ﬁw’*( )dg .

We have that

P s o)
[ (watrr =2 e an ([ 5w oac) ™
Therefore
7 1P ) de > A @~ rq M &~ p=(s) g 7©
UV a + YV iy | £> ez |tnt|Pd§ + My 25 |tin 1) 3

Note that for any A, B € R?V, there holds
|A+ BIP — |AP| < K(|A[P~HB] +|BJP).
Thus

/ (lean + @, V) — wHanw) dé <

< & [ (Wi i Vo] + Vo) de
Now, it is deduced from the Holder inequality that
p—1

/ |'L/)vH1~1fn|Z)71 |ﬂan'L/)|d£ <

scm( / |va|p|an|Pds)”( / |vmzn|pd£> "<

r<|z|<2r U rsklser
SCM( / |Vﬂnpd§> " x
r<|z|<2r
& e
x{( / |va|Qd£) ( / |anp*<0>ds> }g
r<|z|<2r r<|a|<2r

= 4
§015< /|VH@n|pd§) </|ﬁnp*(0)> .

r<|z|<2r r<|z|<2r
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Therefore
lim hmsup/WVHun\p @, Valde = 0. (2.15)

n— oo

Similarly, one can prove that

/ aan¢|pscm< / i

r<|e|<2r

Q—p
Qp
p*(O)) —0 as r—0.

This and (2.15) imply that
hr% hmsup/ (W)VHﬁn + U, VP — |¢VHﬂn|p> dé =0
n— oo

and hence
ap — Mo > My R/P+ () (2.16)

Combining (2.16) with (2.14), we obtain that
either By =0 or By> M)(\Qfs)/(pfs). (2.17)

Therefore J must be a finite set.
In the third place, for any bounded domain Q C HY and J U {0} C €, choosing
Y € CH(Q) such that ¢ > 0, (&) = 0 for j € JU{0}, we have

< ® -~ S < S S S
e / = @ + 37 B0 (€5) + o9 (0) =
ieJ (2.18)
< S
' L ol 0.
It follows from the uniform convexity of Lp+(s) (HN ; z2|g df) that
- . s z|®
Vi, — Y¢ in LPO) <]HIN; |p28 dg) . (2.19)
Similarly one can obtain that
Wiy — ¢ in  LP ( N, 2 d§> (2.20)

From (L’ (1), (p>»D(1),p = o(l)||<p\|Dé,p and choosing ¢ = (i, — ¢), we obtain that

/ DV P2V i, — (VP 2V 5 6) (Vi — Vi) =

_ / ¥ (|an|p*<s>2an + A':J:mm“an) (i — B)dE + o(L).
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It follows that

/ O (Vi P2 it — [V 0PV ) (Vi — Vid)dé =0 as n— oc.

Therefore an elementary inequality implies (2.8) immediately.

Step 5. In this step, we prove that I(¢) = 0. We will prove that neither I(¢) < 0
nor I(¢) > 0 occurs. Indeed, if I(¢) < 0, we get from Lemma 2.1 that there is a
0 < 64 < 1 such that 0,¢ € N. Therefore using the Fatou lemma and I(a,) = 0, we

get that
) 1 1 | 2| |0 | P+ ()
d+01Lun( )/ , d¢ >
(1) = L@n) P pa(s) p?s

P (s)

11 /IZ|S|¢

- — - dé +o(1) =

p p*(8>> P W

R W T e

- — g0+ [ ELTOOL et o(1) =

P p*(8>> ¢ P W

5" L(059) +o1).

It is deduced from 0 < 64 < 1 that d > L(64¢), which is a contradiction because of

(9¢(b eEN.
If I(¢) > 0, then from Step 4 and the Brezis-Lieb lemma [4], one obtains that

.
5

0=1I(un) = I(¢) + I(vn) + o(1),
where v,, = @,, — ¢. In this way I(¢) > 0 implies that

limsup I(vy,) < 0. (2.21)

n— oo

According to Lemma 2.1, we have a sequence 6,, such that 6, v, € N. In order
to simplify the notation, we denote 6,, := 0, . Next we claim that limsup,,_,., 0n €
(0,1). In fact if limsup,, ,, 0, = 1, then there is a subsequence (6, );en such that
limj o0 0, = 1. Thus from 6, v,,; € N, one deduces that for j large enough, I(vy,) =
I(0n,;vn,;) + 0o(1) = o(1). This contradicts (2.21). Therefore limsup,, ., 6, € (0,1).
Since

P« (8)

e oft) = L) = (3 - o) [EE R0

G- )/ i e e 4 o) =
)

P+ (s)
(1_ g (s )/ i |9"“"| Lt —de +o(1) =
P p«(s)

Q)L(ann) (1)7

Y
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one deduces from limsup,, , 60, € (0,1) that d > L(#,v,), which is again a contra-
diction because of 8,,v,, € N.
In the sum we proved that I(¢) = 0.

Step 6. Concluding the proof. We claim that
P
/ <|Van|p - A@)|vn|p> d¢ —0 as n — oo.
p

Arguing by a contradiction. We assume that [ <|Van\p - )\‘;Tl:wn\p) d¢ 4 0 as
n — 00. Then we have two cases:
(i) if [ ‘,jTLwn\P*(S)dg 4 0 as n — oo, we obtain from
0= I(an) = I(¢) + I(vn) + o(1),
I(¢) = 0 and the Brezis-Lieb lemma that

d+o(1) = L(in) = L(¢) + L(vn) + o(1) 2 d 4 d + o(1),

which is a contradiction because of d > 0;
(ii) if [ P+(8)d¢ — 0 as n — oo, we have that

[2]°
025 Un,

d+o(l) =L(i,) =L ! Voo P — 2 ) a D>d
to(l) = Liiy) = <¢>+];/ Varonl? = X5 ) g+ o(1) > d

which is also a contradiction. Therefore we deduce that @, — ¢ in Dé’p (HY). Thus ¢
is a minimizer of the minimum d. O

Proof of Theorem 1.2. The proof of Theorem 1.2 follows directly from Theorem 2.8
and Lemma 2.3. O
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