PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determination of residual stress distribution in high strength aluminum alloy after EDM

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Thermal energy produced by discrete and random electric sparks in electric discharge machining (EDM) melts surface material. A portion of this molten material is removed and the remaining material resolidified by rapid cooling in a hydrocarbon oil. The effect of repeated heating and cooling of the surface and sub surface material with complex temperature gradients results in residual stresses in machined parts. The aim of this investigation is to determine the distribution of residual stresses in the depth of machined material with respect to discharge current, most important electric parameter during EDM. It is well known that surface finish is dependent on discharge current. Therefore, investigations were carried out for smaller discharge current levels i.e. 3, 6, 9, 12 ampere. Hole-drill strain gauge method is used for the determination of residual stresses in the depth of material. For comparison purposes, residual stresses are also determined for conventionally turned specimens. This study provided quantitative analysis of the residual stresses for various discharge current in EDM which is a key parameter in deciding the service life of material.
Twórcy
autor
  • University of Engineering and Technology Taxila, Mechanical Engineering Department, 47080 Taxila, Pakistan
autor
  • University of Engineering and Technology Taxila, Mechatronics Engineering Department, Chakwal Campus, 48800 Chakwal, Pakistan
autor
  • University of Engineering and Technology Taxila, Mechanical Engineering Department, 47080 Taxila, Pakistan
autor
  • Institute of Space Technology, Engineering Research and Development Sector, 44000 Islamabad, Pakistan
autor
  • University of Engineering and Technology Taxila, Mechatronics Engineering Department, Chakwal Campus, 48800 Chakwal, Pakistan
Bibliografia
  • 1. Bussu, G. and P. Irving, The role of residual stress and heat affected zone properties on fatigue crack propagation in friction stir welded 2024-T351 aluminium joints. International Journal of Fatigue, 25 (1), 2003, 77-88.
  • 2. Das, S., M. Klotz, and F. Klocke, EDM simulation: finite element-based calculation of deformation, microstructure and residual stresses. Journal of Materials Processing Technology, 142(2), 2003, 434-451.
  • 3. Denkena, B. and L. de León, Machining induced residual stress in wrought aluminium parts. in Proceedings of 2nd International Conference on Distortion Engineering, Bremen, Germany, 2008, 107-114.
  • 4. E837-08, A., “Standard Test Method for Determining Residual Stresses by the Hole Drilling Strain Gage method,” ASTM Intrenational Conshohocken, PA2008.
  • 5. Ekmekci, B., O. Elkoca, A. Erman Tekkaya, and A. Erden, Residual Stress State and Hardness Depth in Electric Discharge Machining: De-Ionized Water as Dielectric Liquid. Machining Science and Technology, 9(1), 2005, 39-61.
  • 6. Ekmekci, B., A.E. Tekkaya, and A. Erden, A semi-empirical approach for residual stresses in electric discharge machining (EDM). International Journal of Machine Tools and Manufacture, 46(7-8), 2006, 858-868.
  • 7. Flaman, M. and B. Manning, Determination of residual-stress variation with depth by the hole-drilling method. Experimental mechanics, 25(3), 1985, 205-207.
  • 8. García Navas, V., I. Ferreres, J.A. Marañón, C. Garcia-Rosales, and J. Gil Sevillano, Electro-discharge machining (EDM) versus hard turning and grinding – Comparison of residual stresses and surface integrity generated in AISI O1 tool steel. Journal of Materials Processing Technology, 195(1-3), 2008, 186-194.
  • 9. Guo, Y.B., W. Li, and I.S. Jawahir, Surface Integrity Characterization and Prediction in Machining of Hardened and Difficult-to-Machine Alloys: A State-of-Art Research Review and Analysis. Machining Science and Technology, 13(4), December, 2009, 437-470.
  • 10. Herbert, C., D. Axinte, M. Hardy, and P.D. Brown, Investigation into the Characteristics of White Layers Produced in a Nickel-Based Superalloy from Drilling Operations. Machining Science and Technology, 16(1), 2012, 40-52.
  • 11. Huang, X., J. Sun, and J. Li, Effect of Initial Residual Stress and Machining-Induced Residual Stress on the Deformation of Aluminium Alloy Plate. Strojniški vestnik-Journal of Mechanical Engineering, 61(2), 2015, 131-137.
  • 12. Lee, H.-T., W.P. Rehbach, F.-C. Hsu, T.-Y. Tai, and E. Hsu, The study of EDM hole-drilling method for measuring residual stress in SKD11 tool steel. Journal of materials processing technology, 149(1), 2004, 88-93.
  • 13. Lee, H. T. and T. Y. Tai, Relationship between EDM Parameters and Surface Crack Formation. Journal of Materials Processing Technology, 142(3), 12/10/ 2003, 676-683.
  • 14. Micro-Measurements, V., “Measurement of residual stresses by the hole drilling strain gage method,” Tech Note TN-503-62005.
  • 15. Noyan, I.C. and J.B. Cohen, Residual stress: measurement by diffraction and interpretation: Springer-Verlag, 2013.
  • 16. Olabi, A. and M. Hashmi, Stress relief procedures for low carbon steel (1020) welded components. Journal of materials processing technology, 56(1), 1996, 552-562.
  • 17. Prevey, P.S., X-ray diffraction residual stress techniques. ASM International, ASM Handbook., 10(1986, 380-392.
  • 18. Rossini, N.S., M. Dassisti, K.Y. Benyounis, and A.G. Olabi, Methods of measuring residual stresses in components. Materials & Design, 35(3// 2012, 572-588.
  • 19. Schajer, G., Measurement of non-uniform residual stresses using the hole-drilling method. Part I – Stress calculation procedures. Journal of Engineering Materials and Technology, 110(4), 1988, 338-343.
  • 20. Shabgard, M., S.N.B. Oliaei, M. Seyedzavvar, and A. Najadebrahimi, Experimental Investigation and 3D Finite Element Prediction of the White Layer Thickness, Heat Affected Zone, and Surface Roughness in EDM Process. Journal of mechanical science and technology, 25(12), 2011, 3173-3183.
  • 21. Shabgard, M., M. Seyedzavvar, and S.N.B. Oliaei, Influence of Input Parameters on the Characteristics of the EDM Process. Strojniški vestnik – Journal of Mechanical Engineering, 57(09), 2011, 689-696.
  • 22. Srinivasa Rao, P., K. Ramji, and B. Satyanarayana, Effect of wire EDM conditions on generation of residual stresses in machining of aluminum 2014 T6 alloy. Alexandria Engineering Journal, 55(2), 6/2016, 1077-1084.
  • 23. Zeilmann, R.P., T. Vacaro, F.M. Zanotto, and M. Czarnobay, Metallurgical alterations in the surface of steel cavities machined by EDM. Matéria (Rio de Janeiro), 18(4), 2013, 1541-1548.
  • 24. Butt Z., Pasha R.A. and Qayyum F. Generation of electrical energy using lead zirconate titanate (PZT-5A) piezoelectric material: Analytical, numerical and experimental verifications. Journal of Mechanical Science and Technology, 30(8), 2016, 3553-3558.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-710dec9c-ca50-42f0-badc-3eeb23253373
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.