PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental investigation of seawater scrubbing of SO2 in turbulent contact absorbers and spray absorbers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The SOx emissions of the marine engine are regulated by international maritime conventions. In this paper, the effect of various parameters, including SO2 partial pressure, liquid to gas ratio (L/G), alkalinity and pH, was investigated by seawater scrubbing experiment in a turbulent contact absorber (TCA) and a spray absorber (SA) on a laboratory scale. The experimental data showed that the desulfurization efficiency of TCA was mainly dependent on the value of L/G and irrelevant to the changing way of L/G; the appropriate L/G of TCA was 2.3 dm3/m3 and pH of effluent water was 2.4–2.8 at the L/G of 1.1–2.8 dm3/m3. Comparatively, the desulfurization efficiency of increasing liquid flow rate was better than that of decreasing gas flow rate in the SA experiment. At the gas velocity of 1.58 m/s and L/G of 2.3 dm3/m3, the desulfurization efficiencies and drop pressures of TCA and SA were 75.9% and 42.4%, 690 and 260 Pa, respectively. The results indicate that TCA chosen as an absorber is likely to be a competitive desulfurization technique for controlling marine diesel emission.
Rocznik
Strony
39--53
Opis fizyczny
Bibliogr. 28 poz., tab., rys.
Twórcy
autor
  • Merchant Marine College, Shanghai Maritime University, Shanghai 201306, China
autor
  • Merchant Marine College, Shanghai Maritime University, Shanghai 201306, China
autor
  • Merchant Marine College, Shanghai Maritime University, Shanghai 201306, China
  • College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
autor
  • Merchant Marine College, Shanghai Maritime University, Shanghai 201306, China
Bibliografia
  • 1] MA H.R., STEERNBERG K., RIERA-PALOU X., TAIT N., Well-to-wake energy and greenhouse gas analysis of SOx abatement options for the marine industry, Transp. Res. D-Transp. Environ., 2012, 17, 301.
  • [2] Ship Operations Cooperative Program, Exhaust gas cleaning system selection guide, File No. 10047, 01, 2011.
  • [3] OSAKA Y., KITO T., KOBAYASHI N., KURAHARA S., HUANG H.Y., YUAN H.R., HE Z.H., Removal of sulfur dioxide from diesel exhaust gases by using dry desulfurization MnO2 filter, Sep. Purif. Technol., 2015, 150, 80.
  • [4] OIKAWA K., YONGSIRI C., TAKEDA K., HARIMOTO T., Seawater flue gas desulfurization: Its technical implications and performance results, Environ. Prog., 2003, 22 (1), 67.
  • [5] ANDREASEN A., MAYER S., Use of seawater scrubbing for SO2 removal from marine engine exhaust gas, Energy Fuels, 2007, 21, 3274.
  • [6] CAIAZZO G., LANGELLA G., MICCIO F., SCALA F., An experimental investigation on seawater SO2 scrubbing for marine application, Environ. Prog. Sustain. Energy, 2013, 32 (4), 1179.
  • [7] LIU D., ZHOU S., ZHU Y., Use natrium-alkali method to remove SO2 from shipping exhaust gas, ASME 2013 Internal Combustion Engine Division Fall Technical Conference, 13, October, 2013.
  • [8] TANG X., LI T., HAO Y., WU X., ZHU Y., Removal efficiency of magnesium-base seawater desulfurization for marine flue gas, J. Basic Sci. Eng., 2012, 20 (6), 1081.
  • [9] JAHANMIRI A., AYATOLLAHI S., EMAMIPOUR H., Mathematical modelling of flue-gas desulfurization using lime slurry in a turbulent contact absorber, Int. J. Environ. Poll., 2009, 37 (4), 409.
  • [10] RUBIN E., NGUYEN G., Energy requirements of a limestone FGD system, J. Air Poll. Control Assoc., 1978, 28 (12), 1207.
  • [11] WEN C., CHANG C., Absorption of SO2 in lime and limestone slurry. Pressure drop effect on turbulent contact absorber performance, Environ. Sci. Techn., 1978, 12 (6), 703.
  • [12] ZHOU X., CHENG L., KEENER T., SONG C., Character of turbulent contact absorber in treating low concentration CO2 flue gas, CIESC J., 2011, 62 (11), 3269.
  • [13] LI C., WANG L., ZENG G., WEI X., TAN Y., Study on the technology of wet dedusting of flue gas from medium and small coal-fired boilers, 1st Int. Conf. Energy and Environment, Changsha, China, October 2003.
  • [14] GHAZI A., HISHAM H., NAGLAA E., Solubility of sulfur dioxide in seawater, Ind. Eng. Chem. Res., 2001, 40, 1434.
  • [15] LI X., ZHU C., MA Y., Removal of SO2 using ammonium bicarbonate aqueous solution as an absorbent in a bubble column reactor, Front. Chem. Sci. Eng., 2013, 7 (2), 185.
  • [16] RAHMANI F., MOWLA D., KARIMI G., GOLKHAR A., RAHMATMAND B., SO2 removal from simulated flue gas using various aqueous solutions: Absorption equilibria and operational data in a packed column, Sep. Purif. Techn., 2015, 153, 162.
  • [17] WANG W., YANG C., ZHANG J., Absorption of sulfur dioxide from flue gas with sodium alkali solution in packed columns, Adv. Mater. Res., 2011, 383–390, 6409.
  • [18] GAO X., DING H., DU Z., WU Z., FANG M., LUO Z., CEN K., Gas–liquid absorption reaction between (NH4)2SO3 solution and SO2 for ammonia-based wet flue gas desulfurization, Appl. Energy, 2010, 87, 2647.
  • [19] EL-DESSOUKY H., Thermal and hydraulic performance of a three-phase fluidized bed cooling tower, Exp. Thermal Fluid Sci., 1993, 6 (4), 417.
  • [20] JIANG X., LIU Y., GU M., Absorption of sulfur dioxide with sodium citrate buffer solution in a rotating packed bed, Chin. J. Chem. Eng., 2011, 19 (4), 687.
  • [21] SARKAR S., MEIKAP B., CHATTERJEE S., Modeling of removal of sulfur dioxide from flue gases in a horizontal cocurrent gas–liquid scrubber, Chem. Eng. J., 2007, 131 (1), 263.
  • [22] LV Y., YU X., TU S., YAN J., DAHLQUIST E., Experimental studies on simultaneous removal of CO2 and SO2 in a polypropylene hollow fiber membrane contactor, Appl. Energy, 2012, 97, 283.
  • [23] CHIEN T., CHU H., Removal of SO2 and NO from flue gas by wet scrubbing using an aqueous NaClO2 solution, J. Hazard. Mater., 2000, B80, 43.
  • [24] SUN X., MENG F., YANG F., Application of seawater to enhance SO2 removal from simulated flue gas through hollow fiber membrane contactor, J. Membr. Sci., 2008, 312, 6.
  • [25] DARAKE S., RAHIMI A., HATAMIPOUR M.S., HAMZELOUI P., SO2 removal by seawater in a packed-bed tower. Experimental study and mathematical modeling, Sep. Sci. Techn., 2014, 49 (7), 988.
  • [26] BAO J., MAO L., LI Z., ZHU J., MA L., YANG L., YANG H., Temperature and humidity variation characteristics of desulfurated flue gas at outlet of wet flue gas desufurization system, Trans. Chin. Soc. Agric. Eng., 2016, 32 (8), 231.
  • [27] UCHIDA S., CHANG C., WEN C., Mechanics of a turbulent contact absorber, Can. J. Chem. Eng., 1977, 55 (4), 392.
  • [28] ZAHEDI G., JAHANMIRI A., ELKAMEL A., LOHI A., Mathematical modeling, simulation, and experimental verification of CO2 removal in a turbulent contact absorber, Chem. Eng. Techn., 2006, 29 (8), 916.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7109873c-92b1-4abd-96fb-93c9b4c96548
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.