Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We fabricated double-laminated antimony tin oxide/Ag nanowire electrodes by spin-coating and electrospraying. Compared to pure Ag nanowire electrodes and single-laminated antimony tin oxide/Ag nanowire electrodes, the double-laminated antimony tin oxide/Ag nanowire electrodes had superior transparent conducting electrode performances with sheet resistance ~19.8 Ω/□ and optical transmittance ~81.9%; this was due to uniform distribution of the connected Ag nanowires because of double lamination of the metallic Ag nanowires without Ag aggregation despite subsequent microwave heating at 250°C. They also exhibited excellent and superior long-term chemical and thermal stabilities and adhesion to substrate because double-laminated antimony tin oxide thin films act as the protective layers between Ag nanowires, blocking Ag atoms penetration.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1275--1279
Opis fizyczny
Bibliogr. 14 poz., rys., tab.
Twórcy
autor
- Program of Materials Science & Engineering, Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, 232 Gongneung-Ro, Nowon-Gu, Seoul 139-743, Korea
autor
- Department of Materials Science and Engineering, Seoul National University of Science and Technology, 232 Gongneung-Ro, Nowon-Gu, Seoul 139-743, Korea
autor
- Program of Materials Science & Engineering, Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, 232 Gongneung-Ro, Nowon-Gu, Seoul 139-743, Korea
- Department of Materials Science and Engineering, Seoul National University of Science and Technology, 232 Gongneung-Ro, Nowon-Gu, Seoul 139-743, Korea
Bibliografia
- [1] A.R. Madaria, A. Kumar, C. Zhou, Nanotechnology 22, 245201 (2011).
- [2] C.G. Granqvist, Sol. Energy Mater. Sol. Cells 91, 1529 (2007).
- [3] H. Han, D. Adams, J.W. Mayer, T.L. Alfold, J. Appl. Phys. 98, 083705 (2005).
- [4] A. Kumar, C. Zhou, ACS Nano 4, 11 (2010).
- [5] D.S. Leem, A. Edwards, M. Faist, J. Nelson, D.D.C. Bradley, J.C. de Mello, Adv. Mater. 23, 4371 (2011).
- [6] J. Wang, J. Jiu, T. Sugahara, S. Nagao, M. Nogi, H. Koga, P. He, K. Suganuma, H. Uchida, ACS Appl. Mater. Interfaces 7, 23297 (2015).
- [7] Z. Yu, Q. Zhang, L. Li, Q. Chen, X. Niu, J. Liu, Q. Pei, Adv. Mater. 23, 664 (2011).
- [8] B.R. Koo, H.J. Ahn, Appl. Phys. Express 7, 075002 (2014).
- [9] J.W. Lim, D.Y. Cho, J. Kim, S.I. Na, H.K. Kim, Sol. Energy Mater. Sol. Cells 107, 348 (2012).
- [10] K.W. Seo, J.H. Lee, N.G. Cho, S.J. Kang, H.K. Kim, S.I. Na, H.W. Koo, T.W. Kim, J. Vac. Sci. Technol. A 32, 061201 (2014).
- [11] K.S. Kim, S.Y. Yoon, W.J. Lee, K.H. Kim, Surf. Coat. Technol., 138, 229 (2001).
- [12] O. Nakagawara, Y. Kishimoto, H. Seto, Y. Koshido, Y. Yoshino, T. Makino, Appl. Phys. Lett., 89, 091904 (2006).
- [13] S. Yu, W. Zhang, L. Li, D. Xu, H. Dong, Y. Jin, Acta Mater. 61, 5429 (2013).
- [14] S.-H. Cho, W.-J. Lee, Jpn. J. Appl. Phys. 49, 111102 (2010).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-710984f8-eb57-438b-a5cf-5e284c435c59