PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Measurements of Concentration differences between Liquid Mixtures using Digital Holographic Interferometry

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We present an alternative method to detect and measure the concentration changes in liquid solutions. The method uses Digital Holographic Interferometry (DHI) and is based on measuring refractive index variations. The first hologram is recorded when a wavefront from light comes across an ordinary cylindrical glass container filled with a liquid solution. The second hologram is recorded after slight changing the liquid’s concentration. Differences in phase obtained from the correlation of the first hologram with the second one provide information about the refractive index variation, which is directly related to the changes in physical properties related to the concentration. The method can be used − with high sensitivity, accuracy, and speed − either to detect adulterations or to measure a slight change of concentration in the order of 0.001 moles which is equivalent to a difference of 0.003 g of sodium chloride in solutions. The method also enables to measure and calculate the phase difference among each pixel of two samples. This makes it possible to generate a global measurement of the phase difference of the entire sensed region.
Rocznik
Strony
19--26
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wzory
Twórcy
  • Universidad Autónoma de Zacatecas, Unidad Académica de Ingeniería Eléctrica, Ramón López Velarde 801, C.P. 98000, Zacatecas, Mexico
  • Universidad Autónoma de Zacatecas, Unidad Académica de Física, Calzada Solidaridad Esq. Con Paseo La Bufa S/N, C.P. 98060, Zacatecas, Mexico
  • Universidad Autónoma de Zacatecas, Unidad Académica de Ingeniería Eléctrica, Ramón López Velarde 801, C.P. 98000, Zacatecas, Mexico
  • Instituto de Investigación en Comunicación Óptica (IICO-UASLP), Karakorum 1470, Lomas 4ta. Sección, C.P. 78210, San Luis Potosí, Mexico
  • Universidad Autónoma de Zacatecas, Unidad Académica de Ingeniería Eléctrica, Ramón López Velarde 801, C.P. 98000, Zacatecas, Mexico
  • Universidad Autónoma de Zacatecas, Unidad Académica de Ingeniería Eléctrica, Ramón López Velarde 801, C.P. 98000, Zacatecas, Mexico
Bibliografia
  • [1] Cracolice, M.S. (2016). Basics of Introductory Chemistry with Math Review. Montana: Brooks/Cole.
  • [2] Henrickson, C. (2010). CliffsNotes Chemistry Practice Pack. Ney Jersey: J. Wiley & Sons.
  • [3] Hecht, E. (2002). Optics. 4th ed. San Francisco: Addison-Wesley.
  • [4] Kress-Rogers, E., Brimelow, C.J.B. (2001). Instrumentation and Sensors for the Food Industry. 2nd ed. Abington: Woodhead Pubishing Limited.
  • [5] Chandra, B., Bhaiya, S. (1983). A simple, accurate alternative to the minimum deviation method of determining the refractive index of liquids. Am. J. Phys., 51(2), 160-161.
  • [6] Grange, B., Stevenson, W.H., Viskanta, R. (1976). Refractive index of liquid solutions at low temperatures: an accurate measurement. Appl. Opt., 15(4), 858-859.
  • [7] Edmiston, M.D. (1986). Measuring refractive indices. Phys. Teach., 24(3), 160-163.
  • [8] Shenoy, M.R.S., Thyagarajan, K. (1990). Simple prism coupling technique to measure the refractive index of a liquid and its variation with temperature. Rev. Sci. Instrum., 61(3), 1010-1013.
  • [9] Fan, J.P.L.C-H. (1998). Precision laser-based concentration and refractive index measurement of liquids. Microscale Thermophysical Engineering, 2(4), 261-272.
  • [10] Nemoto, S. (1992). Measurement of the refractive index of liquid using laser beam displacement. Appl. Opt., 31(31), 6690-6694.
  • [11] Moreels, E., De, Greef C., Finsy, R. (1984). Laser light refractometer. Appl. Opt., 23(17), 3010-3013.
  • [12] Toker, G.R. (2012). Holographic interferometry: A Mach-Zehnder Approach. Boca Raton: Taylor & Francis Group.
  • [13] Colombani, J., Bert, J. (2007). Holographic interferometry for the study of liquids. J. Mol. Liq., 134(1), 8-14.
  • [14] Kreis, T. (2005). Handbook of holographic interferometry: Optical and Digital Methods. Klagenfurter: WILEY-VCH Verlag GmbH & Co.KGaA.
  • [15] Goldstein, R.J. (1996). Fluid mechanics measurements. 2nd ed. Philadelphia: Taylor & Francis Group.
  • [16] Hossain, M.M., Mehta, D.S., Shakher, C. (2006). Refractive index determination: an application of lensless fourier digital holography. Opt. Eng., 45(10), 106203-106203.
  • [17] Zhang, Y., Zhao, J., Di J., Jiang, H., Wang, Q., Wang, J., Guo, Y., Yin, D. (2012). Real-time monitoring of the solution concentration variation during the crystallization process of protein-lysozyme by using digital holographic interferometry. Opt. Express, 20(16), 18415-18421.
  • [18] Zhao, J., Zhang, Y., Jiang, H., Di, J. (2013). Dynamic measurement for the solution concentration variation using digital holographic interferometry and discussion for the measuring accuracy. Proc. icOPEN2013, Singapore, Singapure, 87690D-87690D.
  • [19] Takeda, M., Ina, H. Kobayashi, S. (1982). Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. Jos. A., 72(1), 156-160.
  • [20] Haynes. W.M. (2015). Concentrative properties of aqueous solutions: density, refractive index, freezing point depression, and viscosity 96th ed., Boca Raton: Taylor & Francis Group.
  • [21] Saucedo, A.T., Mendoza, F., De la Torre-Ibarra M., Pedrini, G., Osten, W. (2006). Endoscopic pulsed digital holography for 3D measurements. Opt. Express, 14(4), 1468-1475.
Uwagi
EN
One of the authors (Carlos Guerrero-Méndez) acknowledges CONACYT (México) for providing a partial financial support for this work.
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-71093ba0-545c-4282-b846-035c9f6d7cce
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.