PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bending and buckling analysis of FGM plates resting on elastic foundations in hygrothermal environment

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present paper deals with the effect of exponential temperature and moisture concentration on the bending and buckling analysis of functionally graded plates resting on two-parameter elastic foundations via a four-variable exponential shear deformation theory. The mechanical properties of the plates are assumed to vary through the thickness. The equations of equilibrium are derived using Hamilton’s principle. The present solutions are derived using Navier’s method. Using Navier’s solution the numerical results are presented and compared well with those available in the literature. Discussions are made to show how the foundation stiffness, hygrothermal loading and other parameters have a significant influence on the bending and buckling analysis of FG plates under hygrothermal and mechanical loading.
Rocznik
Strony
198--220
Opis fizyczny
Bibliogr. 57 poz., tab., wykr.
Twórcy
  • Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
  • Department of Mathematics, Faculty of Science, Kafrelsheikh University, Kafr El‑Sheikh 33516, Egypt
autor
  • Department of Mathematics and Statistics, High Institute of Management and Information Technology, Nile for Science and Technology, Kafr El‑Sheikh 33514, Egypt
Bibliografia
  • [1] Matsuo S, Watari F, Ohata N. Fabrication of functionally graded dental composite resin post and core by laser lithography and finite element analysis of its stress relaxation effect on tooth root. Dental Mater J. 2001;20:257–74.
  • [2] Malinina M, Sammi T, Gasik M. Corrosion resistance of homogeneous and FGM coatings. Mater Sci Forum. 2005;2:305–10.
  • [3] Marin L. Numerical solution of the Cauchy problem for steadystate heat transfer in two dimensional functionally graded materials. Int J Solids Struct. 2005;42:4338–511.
  • [4] Lu L, Chekroun M, Abraham O, Maupin V, Villain G. Mechanical properties estimation of functionally graded materials using surface waves recorded with a laser interferometer. NDT&E Int. 2011;44:169–77.
  • [5] Müller E, Drăsar C, Schilz J, Kaysser WA. Functionally graded materials for sensor and energy applications. Mater Sci Eng A. 2003;362:17–30.
  • [6] Kashtalyan M. Three-dimensional elasticity solution for bending of functionally graded rectangular plates. Eur J Mech A Solids. 2004;23:853–64.
  • [7] Woodward B, Kashtalyan M. Three-dimensional elasticity solution for bending of transversely isotropic functionally graded plates. Eur J Mech A Solids. 2011;30:705–18.
  • [8] Zenkour AM. Benchmark trigonometric and 3-D elasticity solutions for an exponentially graded thick rectangular plate. Arch Appl Mech. 2006;77:197–21414.
  • [9] Zenkour AM. Generalized shear deformation theory for bending analysis of functionally graded plates. Appl Math Model. 2006;30:67–84.
  • [10] Zhong Z, Shang E. Closed-form solutions of three-dimensional functionally graded plates. Mech Adv Mater Struct. 2008;15:355–63.
  • [11] Yun W, Rongqiao X, Haojiang D. Three-dimensional solution of axisymmetric bending of functionally graded circular plates. Compos Struct. 2010;92:1683–93.
  • [12] Yang B, Ding HJ, Chen WQ. Elasticity solutions for functionally graded rectangular plates with two opposite edges simply supported. Appl Math Model. 2012;36:488–503.
  • [13] Mechab I, Mechab B, Benaissa S. Static and dynamic analysis of functionally graded plates using four-variable refined plate theory by the new function. Compos Part B Eng. 2013;45:748–57.
  • [14] Thai HT, Choi DH. A simple first-order shear deformation theory for the bending and free vibration analysis of functionally graded plates. Compos Struct. 2013;101:332–40.
  • [15] Zenkour AM, Radwan AF. Compressive study of functionally graded plates resting on Winkler-Pasternak foundations under various boundary conditions using hyperbolic shear deformation theory. Arch Civil Mech Eng. 2018;18:645–58.
  • [16] Zenkour AM. Hygro-themo-mechanical effects on FGM plates resting on elastic foundations. Compos Strut. 2010;93:234–8.
  • [17] Challamel N, Zorica D, Atanacković TM, Spasić DT. On the fractional generalization of Eringen’s nonlocal elasticity for wave propagation. CR Mech. 2013;34:298–303.
  • [18] Oskouie MF, Ansari R, Rouhi H. Bending analysis of functionally graded nanobeams based on the fractional nonlocal continuum theory by the variational Legendre spectral collocation method. Meccanica. 2018;53:1115–30.
  • [19] Rahimi Z, Rezazadeh G, Sumelka W. A non-local fractional stress–strain gradient theory. Int J Mech Mater Des. 2020;16:265–78.
  • [20] Ghayesh MH. Nonlinear oscillations of FG cantilevers. Appl Acoust. 2019;145:393–8.
  • [21] Ghayesh MH. Viscoelastic mechanics of Timoshenko functionally graded imperfect microbeams. Compos Struct. 2019;225:110974.
  • [22] Ghayesh MH. Mechanics of viscoelastic functionally graded microcantilevers. Eur J Mech A Solids. 2019;73:492–9.
  • [23] Ghayesh MH. Dynamics of functionally graded viscoelastic microbeams. Int J Eng Sci. 2018;124:115–31.
  • [24] Ghayesh MH. Viscoelastic dynamics of axially FG microbeams. Int J Eng Sci. 2019;135:75–85.
  • [25] Brischetto S, Leetsch R, Carrera E, Wallmersperger T, Kaplin B. Thermo-mechanical bending of functionally graded plates. J Therm Stress. 2008;31:286–308.
  • [26] Cinefra M, Carrera E, Brischetto S, Belouettar S. Thermomechanical analysis of functionally graded shells. J Therm Stress. 2010;33:942–63.
  • [27] Matsunaga H. Stress analysis of functionally graded plates subjected to thermal and mechanical loadings. Compos Struct. 2009;87:344–57.
  • [28] Zenkour AM. The effect of transverse shear and normal deformations on the thermomechanical bending of functionally graded sandwich plates. Int J Appl Mech. 2009;1:667–707.
  • [29] Zenkour AM, Alghamdi NA. Thermomechanical bending response of functionally graded nonsymmetric sandwich plates. J Sandwich Struct Mater. 2009;12:7–46.
  • [30] Zenkour AM, Allam MNM, Radwan AF. Effects of transverse shear and normal strains on FG plates resting on elastic foundations under hygro-thermo-mechanical loading. Int J Appl Mech. 2014;6:1450063.
  • [31] Zenkour AM, Allam MNM, Radwan AF. Effects of hygrothermal conditions on cross-ply laminated plates resting on elastic foundations. Arch Civil Mech Eng. 2014;14:144–59.
  • [32] Reddy JN, Chin C. Thermomechanical analysis of functionally graded cylinders and plates. J Therm Stress. 1998;212:593–626.
  • [33] Vel S, Batra R. Exact solution for thermoelastic deformations of functionally graded thick rectangular plates. AIAA J. 2012;40:1421–33.
  • [34] Ying J, Lu C, Lim CW. 3D thermoelasticity solutions for functionally graded thick plates. J Zhejiang Univ Sci A. 2009;10:327–36.
  • [35] Winkler E. Die Lehre von der Elasticitaet und Festigkeit. Prague: Dominicus; 1867.
  • [36] Pasternak PL. On a new method of analysis of an elastic foundation by means of two foundation constants. Moscow: Gosudarstvennoe Izdatelstvo Literaturi po Stroitelstvu iArkhitekture; 1954. p. 1–56.
  • [37] Lam KY, Wang CM, He XQ. Canonical exact solution for Levyplates on two parameter foundation using Green’s functions. Eng Struct. 2000;22:364–78.
  • [38] Huang ZY, Lu CF, Chen WQ. Benchmark solutions for functionally graded thick plates resting on Winkler-Pasternak elastic foundations. Compos Struct. 2008;85:95–104.
  • [39] Buczkowski R, Torbacki W. Finite element modeling of thick plates on two-parameter elastic foundation. Int J Numer Anal Methods Geomech. 2001;25:1409–27.
  • [40] Zhou D, Cheung YK, Lo SH, Au FTK. Three-dimensional vibration analysis of rectangular thick plates on Pasternak foundations. Int J Numer Methods Eng. 2004;59:1313–34.
  • [41] Yaghoobi H, Fereidoon A. Mechanical and thermal buckling analysis of functionally graded plates resting on elastic foundations: an assessment of a simple refined nth-order shear deformation theory. Compos Part B Eng. 2014;62:54–64.
  • [42] Thai HT, Choi DH. A refined plate theory for functionally graded plates resting on elastic foundation. Compos Sci Technol. 2011;71:18501858.
  • [43] Thai HT, Kim SE. Closed-form solution for bucking analysis of thick functionally graded plates on elastic foundation. Int J Mech Sci. 2013;75:34–44.
  • [44] Zenkour AM, Allam MNM, Radwan AF. Bending of cross-ply laminated plates resting on elastic foundations under thermomechanical loading. Int J Mech Mater Des. 2013;9:239–51.
  • [45] Mashat DS, Zenkour AM, Radwan AF. A quasi 3-D higher-order plate theory for bending of FG plates resting on elastic foundations under hygro-thermo-mechanical loads with porosity. Eur J Mech A Solids. 2020;82:103985.
  • [46] Reddy JN, Cheng ZQ. Three-dimensional thermomechanical deformations of functionally graded rectangular plates. Eur J Mech A Solids. 2001;20:841–55.
  • [47] Reddy JN. Analysis of functionally graded plates. Int J Numer Methods Eng. 2000;47:663–84.
  • [48] Kobayashi H, Sonoda K. Rectangular Mindlin plates on elastic foundations. Int J Mech Sci. 1989;31:679–92.
  • [49] Thai HT, Choi DH. A simple refined theory for bending, buckling, and vibration of thick plates resting on elastic foundation. Int J Mech Sci. 2013;73:40–52.
  • [50] Han JB, Liew KM. Numerical differential quadrature method for Reissner/Mindlin plates on two-parameter foundations. Int J Mech Sci. 1997;39:977–89.
  • [51] Benyoucef S, Mechab I, Tounsi A, Fekrar A, Atmane HA, Bedia EAA. Bending of thick functionally graded plates resting on Winkler-Pasternak elastic foundations. Mech Compos Mater. 2010;46:425–34.
  • [52] Carrera E, Brischetto S, Cinefra M, Soave M. Effects of thickness stretching in functionally graded plates and shells. Compos Part B. 2011;42:123–33.
  • [53] Neves AMA, Ferreira AJM, Carrera E, Roque CMC, Cinefra M, Jorge RMN, Soares CMM. Bending of FGM plates by a sinusoida plate formulation and collocation with radial basis functions. Mech Res Commun. 2011;38:368–71.
  • [54] Carrera E, Brischetto S, Robaldo A. Variable kinematic model for the analysis of functionally graded material plates. AIAA J. 2008;46:194–203.
  • [55] Zenkour AM. The refined sinusoidal theory for FGM plates on elastic foundations. Int J Mech Sci. 2009;51:869–80.
  • [56] Thai HT, Choi DH. A refined plate theory for functionally graded plates resting on elastic foundation. Compos Sci Technol. 2011;71:1850–8.
  • [57] Yaghoobi H, Fereidoon A. Mechanical and thermal buckling analysis of functionally graded plates resting on elastic foundations: an assessment of a simple refined nth-order shear deformation theory. Compos B. 2014;62:54–64.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7106ae6f-c355-4b56-ba2f-50c0368ccbeb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.