Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Computer-generated holography is a technology valuable for efficient projection and three-dimensional displays, with a growing number of calculation algorithms and relatively simple optical setups for image reconstruction. Among available technologies, liquid crystal on silicon spatial light modulators can provide uncomplicated phase modulation of incident wavefronts. However, these devices face challenges to overcome, such as the presence of multiple image duplicates in hologram reconstructions. Here, we propose a method for reducing visibility of those duplicates in which the volume and complexity of the setup remain the same. It is based on randomisation of positions of light-modulating pixels and distorting the otherwise regular pixel array of the modulator, without modifying the device. We present a theoretical analysis and results obtained in both simulations and experiment. Signal-to-noise ratio in the areas surrounding the desired image is shown to decrease, suppressing the presence of image duplicates. Various levels of randomisation are considered and can be selected with specific applications in mind.
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. e156668
Opis fizyczny
Bibliogr. 28 poz., rys., wykr., tab.
Twórcy
autor
- Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
autor
- Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
autor
- Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
autor
- Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
autor
- Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
Bibliografia
- [1] Gabor, D. Holography, 1948-1971. Science 177, 299–313 (1972). https://doi.org/10.1126/science.177.4046.299.
- [2] Nehmetallah, G. & Banerjee, P. P. Applications of digital and analog holography in three-dimensional imaging. Adv. Opt. Photonics 4, 472–553 (2012). https://doi.org/10.1364/AOP.4.000472.
- [3] Haleem, A., Javaid, M. & Khan, I. H. Holography applications toward medical field: An overview. Indian J. Radiol. Imaging 30, 354–361 (2020). https://doi.org/10.4103/ijri.IJRI_39_20.
- [4] Zhang, Y., Lu, Q., Ge, B., Zhao, H. & Sun, Y. Digital holography and its application. Proc. SPIE 5636, Holography, Diffractive Optics, and Applications II (2005). https://doi.org/10.1117/12.570295.
- [5] Slinger, C. et al. Recent developments in computer-generated holography: Toward a practical electroholography system for interactive 3d visualisation. Proc. SPIE 5290, 27–41 (2004). https://doi.org/10.1117/12.526690.
- [6] Slinger, C., Cameron, C. & Stanley, M. Computer-generated holography as a generic display technology. Computer 38, 46–53 (2005). https://doi.org/10.1109/MC.2005.260.
- [7] Poon, T.-C. (ed.) Digital Holography and Three-Dimensional Display: Principles and Applications (Springer, 2006).
- [8] Yamaguchi, T. Real-time image plane full-color and full-parallax holographic video display system. Opt. Eng. 46, 125801 (2007). https://doi.org/10.1117/1.2823485.
- [9] Wei, L. et al. Diffraction properties of quasi-random pinhole arrays: Suppression of higher orders and background fluctuations. J. Mod. Opt. 64, 2420–2427 (2017). https://doi.org/10.1080/09500340.2017.1367853.
- [10] Agour, M., Falldorf, C. & Von Kopylow, C. Digital pre-filtering approach to improve optically reconstructed wavefields in opto-electronic holography. J. Opt. 12, 055401 (2010). https://doi,org/10.1088/2040-8978/12/5/055401.
- [11] Agour, M., Falldorf, C. & von Kopylow, C. Complementary filtering approach to enhance the optical reconstruction of holograms from a spatial light modulator. In Osten, W. & Kujawinska, M. (eds.) Fringe 2009, 1–6 (Springer, 2009). https://doi.org/10.1007/978-3-642-03051-2_34.
- [12] Gopakumar, M., Kim, J., Choi, S., Peng, Y. & Wetzstein, G. Unfiltered holography: Optimizing high diffraction orders without optical filtering for compact holographic displays. Opt. Lett. 46, 5822–5825 (2021). https://doi.org/10.1364/OL.442851.
- [13] Park, J., Lee, K. & Park, Y. Ultrathin wide-angle large-area digital 3d holographic display using a non-periodic photon sieve. Nat. Commun. 10, 1304 (2019). https://doi.org/10.1038/s41467-019-09126-9.
- [14] Onural, L., Yaraş, F. & Kang, H. Digital holographic three-dimensional video displays. Proc. IEEE 99, 576–589 (2011). https://doi.org/10.1109/JPROC.2010.2098430.
- [15] Agour, M., Kolenovic, E., Falldorf, C. & von Kopylow, C. Suppression of higher diffraction orders and intensity improvement of optically reconstructed holograms from a spatial light modulator. J. Opt. A: Pure Appl. Opt. 11, 105405 (2009). https://doi.org/10.1088/1464-4258/11/10/105405.
- [16] Smalley, D. E., Smithwick, Q. Y. J., Bove, V. M., Barabas, J. & Jolly, S. Anisotropic leaky-mode modulator for holographic video displays. Nature 498, 313–317 (2013). https://doi.org/10.1038/nature12217.
- [17] Starobrat, J. et al. Photo-magnetic recording of randomized holographic diffraction patterns in a transparent medium. Opt. Lett. 45, 5177–5180 (2020). https://doi.org/10.1364/OL.400857.
- [18] Stupakiewicz, A., Szerenos, K., Afanasiev, D., Kirilyuk, A. & Kimel, A. V. Ultrafast nonthermal photo-magnetic recording in a transparent medium. Nature 542, 71–74 (2017). https://doi.org/10.1038/nature20807.
- [19] Goodman, J. W. Introduction to Fourier Optics (Roberts and Company Publishers, 2005).
- [20] Gao, S., Sánchez-López, M. D. M. & Moreno, I. Feasibility study of liquid-crystal spatial light modulators for displaying triplicator gratings at their spatial resolution limit. Proc. SPIE 13016, 13160O (2024). https://doi.org/10.1117/12.3017454.
- [21] Zang, H. P. et al. Elimination of higher-order diffraction using zigzag transmission grating in soft x-ray region. Appl. Phys. Lett. 100, 111904 (2012). https://doi.org/10.1063/1.3693395.
- [22] Gao, N. & Xie, C. High-order diffraction suppression using modulated groove position gratings. Opt. Lett. 36, 4251–4253 (2011). https://doi.org/10.1364/OL.36.004251.
- [23] Yang, Z. et al. A novel single-order diffraction grating: Random position rectangle grating. Chin. Phys. B 25, 054209 (2016). https://doi.org/10.1088/1674-1056/25/5/054209.
- [24] Liu, Z. et al. Two-dimensional gratings of hexagonal holes for high order diffraction suppression. Opt. Express 25, 1339–1349 (2017). https://doi.org/10.1364/OE.25.001339.
- [25] Li, H., Shi, L., Wei, L., Xie, C. & Cao, L. Higher-order diffraction suppression of free-standing quasiperiodic nanohole arrays in the x-ray region. Appl. Phys. Lett. 110, 041104 (2017). https://doi.org/10.1063/1.4974940.
- [26] Kim, H., Yang, B. & Lee, B. Iterative Fourier transform algorithm with regularization for the optimal design of diffractive optical elements. J. Opt. Soc. Am. A 21, 2353–2365 (2004). https://doi.org/10.1364/JOSAA.21.002353.
- [27] Makowski, M. et al. Simple holographic projection in color. Opt. Express 20, 25130–25136 (2012). https://doi.org/10.1364/OE.20.025130.
- [28] Shimobaba, T. et al. Simple complex amplitude encoding of a phase-only hologram using binarized amplitude. J. Opt. 22, 045703 (2020). https://doi.org/10.1088/2040-8986/ab7b02.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-71033693-7a85-41ab-973b-1dd3aafe4fef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.