PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Testing and modeling the possibility of using a lamellar grinding wheel with an adaptive background structure

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the article, the authors present the concept of a mathematical model used to study the influence of the properties of the base materials used to produce an innovative abrasive wheel background on the operating characteristics of the final tool. This model will be used to verify various material and construction solutions. The article also covers the outcomes of research that confirm the developed model’s effectiveness in relation to the operation of lamellar grinding discs, as per their intended technological goal. The experiments involved surface grinding with grinding wheels constructed on chosen backgrounds. A dedicated research stand was designed to measure the temperature in the grinding zone without direct contact, using both new and used grinding discs. The tests incorporated various load levels applied by the grinding disc on the workpiece, as well as different working angles of the grinding disc.
Rocznik
Strony
art. no. 183318
Opis fizyczny
Bibliogr. 36 poz., fot., rys., tab., wykr.
Bibliografia
  • 1. Adibi H, Rezaei Ahmed S M, Sarhan A D. Analytical modeling of grinding wheel loading phenomena. International Journal of Advanced Manufacturing Technology 2013; 68: 473-485, https://doi.org/10.1007/s00170-013-4745-z.
  • 2. Arriandiaga A; Portillo E; Sánchez J A; Cabanes I; Pombo I. Virtual Sensors for On-line Wheel Wear and Part Roughness Measurement in the Grinding Process. Sensors 2014, 14, 8756-8778. https://doi.org/10.3390/s140508756.
  • 3. Axinte D, Butler-Smith P, Akgun C, Kolluru K. On the influence of single grit microgeometry on grinding behavior of ductile and brittle materials. International Journal of Machine Tools and Manufacture 2013; 74: 12-18, https://doi.org/10.1016/j.ijmachtools.2013.06.002.
  • 4. Borucka A, Kozłowski E, Parczewski R, Antosz K, Gil L, Pieniak D. Supply Sequence Modelling Using Hidden Markov Models.Applied Sciences. 2023; 13(1):231. https://doi.org/10.3390/app13010231
  • 5. Demko, M.; Vrabeľ, M.; Maňková, I.; Ižol, P. Cutting tool monitoring while drilling using internal CNC data. Procedia CIRP 2022, 112, 263–267. https://doi.org/10.1016/j.procir.2022.09.082.
  • 6. Guo G; Malkin S. Grinding Technology Theory and Applications of Machining with Abrasives, 2nd ed.; Industrial Press: New York, NY, USA, 2008; pp. 257–270.
  • 7. Herzenstiel P, Aurich J C. CBN-grinding wheel with a defined grain pattern -extensive numerical and experimental studies, Machining Science and Technology 2010; 14: 301-322, https://doi.org/10.1080/10910344.2010.511574.
  • 8. Jackson M J, Mills B. Microscale wear of vitrified abrasive materials. Journal of Materials Science 2004; 39: 2131-2143, https://doi.org/10.1023/B:JMSC.0000017776.67999.86.
  • 9. Kacalak W, Lipiński D, Rypina Ł, Szafraniec F, Tandecka K, Bałasz B. Performance evaluation of the grinding wheel with aggregates of grains in grinding of Ti-6Al-4V titanium alloy. International Journal of Advanced Manufacturing Technology 2018; 94: 301-314, https://doi.org/10.1007/s00170-017-0905-x.
  • 10. Kacalak W, Lipiński D, Szafraniec F, Banaszek K, Rypina Ł. Probabilistic Aspects of Modeling and Analysis of Grinding Wheel Wear. Materials 2022, 15, 5920. https://doi.org/10.3390/ma15175920
  • 11. Karabacak Y. E, Deep learning-based CNC milling tool wear stage estimation with multi-signal analysis, Eksploatacja i Niezawodnosc –Maintenance and Reliability 2023: 25(3) http://doi.org/10.17531/ein/168082
  • 12. Katalog materiałów ściernych. Koło: Andre Abrasives, 2017.
  • 13. Kato T, Fuji H. Temperature measurement of workpieces in conventional surface grinding. Journal of Manufacturing Science and Engineering 2000; 122: 297-303, https://doi.org/10.1115/1.538918.
  • 14. Kawa P, Świderski A, Wybrane narzędzia statystyczne w zastosowaniu do oceny jakości wyrobów. Gospodarka Materialowa & Logistyka 2016, nr 10/2016.
  • 15. Kopytowski A, Świercz R, Oniszczuk-Świercz D, Zawora J, Kuczak J, Żrodowski Ł. Effects of a New Type of Grinding Wheel with Multi-Granular Abrasive Grains on Surface Topography Properties after Grinding of Inconel 625. Materials 2023, 16, 716. https://doi.org/10.3390/ma16020716.
  • 16. Kozłowski E, Borucka A, Oleszczuk P, Jałowiec T. Evaluation of the maintenance system readiness using the semi-Markov model taking into account hidden factors. Eksploatacja i Niezawodność –Maintenance and Reliability. 2023;25(4). https://doi.org/10.17531/ein/172857
  • 17. Kumar, S.S., Uthayakumar, M., Kumaran, S.T. et al. Performance Monitoring of WEDM Using Online Acoustic Emission Technique. Silicon 10, 2635–2642 (2018). https://doi.org/10.1007/s12633-018-9800-9
  • 18. Marinescu I D, Hitchiner M, Uhlmann E, Rowe W B. Inasaki I.. Handbook of Machining with Grinding Wheels. CRC Press, Boca Raton, 2007. https://doi.org/10.1201/9781420017649
  • 19. Malkin S, Guo C. Thermal analysis of grinding. Annals of the CIRP 2007; 56: 760 -782, https://doi.org/10.1016/j.cirp.2007.10.005.
  • 20. Mgherony, A., Mikó, B. The effect of the spindle speed control when milling free-form surfaces. Int J Adv Manuf Technol (2023). https://doi.org/10.1007/s00170-023-12811-1
  • 21. Nadolny K. Wear phenomena of grinding wheels with sol-gel alumina abrasive grains and glass-ceramic vitrified bond during internal cylindrical traverse grinding of 100Cr6 steel. International Journal of Advanced Manufacturing Technology 2015; 77: 83-98, https://doi. org/10.1007/s00170-014-6432-0.
  • 22. Nosenko V A, Fedotov E V, Nosenko S V et al. Probabilities of abrasive tool grain wearing during grinding. J. Mach. Manuf. Reliab. 38, 270–276 (2009). https://doi.org/10.3103/S1052618809030108.
  • 23. Persson B N J, 2006. Contact mechanics for randomly rough surfaces. Surf. Sci. Rep. 61 (4), 201–227. doi:10.1016/j.surfrep.20 06.04.0 01.
  • 24. Rasim M, Mattfeld P, Klocke F. Analysis of the grain shape influence on the chip formation in grinding. Journal of Materials Processing Technology 2015; 226: 60-68, https://doi.org/10.1016/j.jmatprotec.2015.06.041.
  • 25. Salonitis K, Chondros T, & Chryssolouris G. Grinding wheel effect in the grind-hardening process. Int J Adv Manuf Technol 38, 48–58 (2008). https://doi.org/10.1007/s00170-007-1078-9.
  • 26. Scherge M, Martin J M, Pöhlmann K. Characterization of wear debris of systems operated under low wear-rate conditions. Wear 2006; 260 (4), 458–461. doi:10.1016/j.wear.2005.03.025.
  • 27. Souza A M, da Silva E J, Global strategy of grinding wheel performance evaluation applied to grinding of superalloys, Precision Engineering, Volume 57,2019,Pages 113-126,ISSN 0141-6359, https://doi.org/10.1016/j.precisioneng.2019.03.013.
  • 28. Sun Y, Vu T T. Halil, Z.; Yeo, S.H.; Wee, A. Material removal prediction for contact wheels based on a dynamic pressure sensor. Int. J. Adv. Manuf. Technol. 2017; 93, 945–951. https://doi.org/10.1007/s00170-017-0473-0
  • 29. Talon A G, Sato B K, Rodrigues Md. et al. Green manufacturing concept applied to the grinding process of advanced ceramics using an alternative lubri-refrigeration technique. Int J Adv Manuf Technol 2022; 123, 2771–2782. https://doi.org/10.1007/s00170-022-10385-y.
  • 30. Tönshoff K H, Friemuth T, Becker J C. Process monitoring in grinding. Annals of the CIRP, 2002; 51: 551-571, https://doi.org/10.1016/ S0007-8506(07)61700-4.
  • 31. Uhlmann E, Lypovka P, Hochschild L, Schröer N. Influence of rail grinding process parameters on rail surface roughness and surface layer hardness. Wear 2016; 366-367:287-293, https://doi.org/10.1016/j.wear.2016.03.023.
  • 32. Ullah A S, Caggiano A, Kubo A, Chowdhury M A K. Elucidating Grinding Mechanism by Theoretical and Experimental Investigations. Materials 2018; 11, 274. https://doi.org/10.3390/ma11020274.
  • 33. Wang H, Zhang Z, Li J, Xin W, Han C, Fault analysis and reliability evaluation for motorized spindle of cycloidal gear grinding machine based on multi-source bayes, Eksploatacja i Niezawodnosc –Maintenance and Reliability 2024: 26(1)http://doi.org/10.17531/ein/175010
  • 34. Wang J, Liu X, Wang X, Jin K, Process machining allowance for reliability analysis of mechanical parts based on hidden quality loss, Eksploatacja i Niezawodnosc –Maintenance and Reliability 2023: 25(4) http://doi.org/10.17531/ein/171594
  • 35. Wang S, Li C. Application and development of high-efficiency abrasive process. Int. J. Adv. Sci. Technol. 2012; 47, 51–64.
  • 36. Wegener K, Hoffmeister W, Karpuschewski B, Kuster F, Hahmann W C, Rabiey M. Conditioning and monitoring of grinding wheels. CIRPAnnals 2011; 60: 757-777, https://doi.org/10.1016/j.cirp.2011.05.003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-70fb17be-8c57-4f50-b027-ca16b04f30b2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.