PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A pilot survey for mapping the fault structure around the Geuredong volcano by using high-resolution global gravity

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Global gravity has been used successfully for studying the tectonic mechanism around the world, and the global data can be accessed freely with different resolutions. Global Gravity Model Plus (GGM+) has the highest resolution of 200 m/px. The high-resolution data apply to regional studies and utilize more local areas, such as studying fault structures in volcanic areas, the main access point for seeping fluids to the surface. We used GGM +data to assess the geological structure and faults of the Geuredong volcano located in the central of Aceh, Indonesia. The volcanic mountain is estimated to have an energy of 55 Mwe. We validated the GGM+data with TOPEX/Poseidon data with the lower resolution of 1.83 km/px and showed the same response. The GGM+data with higher resolution describe the regional fault system in Geuredong volcano. Moreover, the global gravity data were also validated by ground survey data measured over 20 km2 with a distance between 250 and 300 m, the validation results between GGM+and ground gravity survey show the same response between the two gravity data with an RMS error of 15.07%. The residual anomaly from GGM+can map several local and regional faults in the Geuredong volcano area. The horizontal transformation specifies fractures and strike-slip faults, the critical mechanisms for the formation of surface manifestations. The 3D modeling with Occam’s algorithm and Singular Value Decomposition (SVD) shows the fault is at a 1–2 km depth indicated by a low density of 2.4 g/cm3 . The cross section results from the inversion model also show the same response as the Geuredong geothermal conceptual model. Based on data processing, the GGM+data can study the fault structure in volcanic areas, especially in high terrain conditions such as tropical countries with inaccessible mobility and developing countries that are financially limited to gravity ground surveys.
Czasopismo
Rocznik
Strony
2057--2075
Opis fizyczny
Bibliogr. 70 poz.
Twórcy
  • Geophysical Engineering Department, Universitas Syiah Kuala, Darussalam-Banda Aceh 23111, Indonesia
autor
  • Geophysical Engineering Department, Universitas Syiah Kuala, Darussalam-Banda Aceh 23111, Indonesia
  • Physics Department, Universitas Syiah Kuala, Darussalam-Banda Aceh 23111, Indonesia
  • Chemistry Department, Universitas Syiah Kuala, Darussalam-Banda Aceh 23111, Indonesia
  • Physics Department, Universitas Syiah Kuala, Darussalam-Banda Aceh 23111, Indonesia
  • Geophysical Engineering Department, Institut Teknologi Sumatera, Lampung, Indonesia
autor
  • Geophysical Engineering Department, Universitas Syiah Kuala, Darussalam-Banda Aceh 23111, Indonesia
  • Department of Geology, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Federal Territory Malaysia, Malaysia
Bibliografia
  • 1. Abdel Zaher M, Saibi H, Mansour K, Khalil A, Soliman M (2018) Geothermal exploration using airborne gravity and magnetic data at Siwa Oasis, Western Desert, Egypt. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2017.10.088
  • 2. Asyqari A, Sugiyanto D, Yanis M, Abdullah F, Ismail N (2019) Mapping of archaeological structure along east-coast of Aceh Besar District, Indonesia based on total magnetic field anomalies. IOP Conf Ser Earth Environ Sci 348:012041. https://doi.org/10.1088/1755-1315/348/1/012041
  • 3. Aydın NG, İşseven T (2021) GravPack: a MATLAB-based gravity data processing package. Arab J Geosci 144(14):1–8. https://doi.org/10.1007/S12517-021-06656-9
  • 4. Bennett JD, Bridge NR, Djunuddin A, Ghazali SA, Jeffery DH, Keats W, Rock NMS, Thompson SJ, Whandoyo R (1981) The geology of the Aceh Quadrangle, Sumatra-Geological Research and Development Centre, Bandung. Explan. Note 19
  • 5. Blakely RJ (1996) Potential theory in gravity and magnetic applications. Cambridge University Press, Cambridge
  • 6. Bouman J, Ebbing J, Meekes S, Fattah RA, Fuchs M, Gradmann S, Haagmans R, Lieb V, Schmidt M, Dettmering D, Bosch W (2015) GOCE gravity gradient data for lithospheric modeling. Int J Appl Earth Obs Geoinf 35:16–30. https://doi.org/10.1016/j.jag.2013.11.001
  • 7. Chatterjee S, Bhattacharyya R, Michael L, Krishna KS, Majumdar TJ (2007) Validation of ERS-1 and high-resolution satellite gravity with in-situ shipborne gravity over the Indian offshore regions: accuracies and implications to subsurface modeling. Mar Geod 30:197–216. https://doi.org/10.1080/01490410701438323
  • 8. Cordell L, Grauch VIS (1982) Mapping basement magnetitation zones from aeromagnetic data in the san juan basin, New Mexico. In: 1982 SEG Annual Meeting, SEG. https://doi.org/10.1190/1.1826915
  • 9. Degroot-Hedlin C, Constable S (1990) Occam’s inversion to generate smooth, two-dimensional models from magnetotelluric data. Geophysics 55:1613–1624. https://doi.org/10.1190/1.1442813
  • 10. Diament M, Mikhailov V, Timoshkina E (2020) Joint inversion of GPS and high-resolution GRACE gravity data for the 2012 Wharton basin earthquakes. J Geodyn. https://doi.org/10.1016/j.jog.2020.101722
  • 11. Direktorat Panas Bumi (2017) Potensi Panas Bumi Indonesia, 1st edn. Direktorat Panas Bumi, Jakarta
  • 12. Fullea J, Fernàndez M, Zeyen H (2008) FA2BOUG—a FORTRAN 90 code to compute Bouguer gravity anomalies from gridded free-air anomalies: application to the Atlantic-Mediterranean transition zone. Comput Geosci 34:1665–1681. https://doi.org/10.1016/j.cageo.2008.02.018
  • 13. Gönenç T (2014) Investigation of distribution of embedded shallow structures using the first order vertical derivative of gravity data. J Appl Geophys 104:44–57. https://doi.org/10.1016/j.jappgeo.2014.02.010
  • 14. Han SC, Sauber J, Luthcke S (2010) Regional gravity decrease after the 2010 Maule (Chile) earthquake indicates large-scale mass redistribution. Geophys Res Lett. https://doi.org/10.1029/2010GL045449
  • 15. Hirt C, Claessens S, Fecher T, Kuhn M, Pail R, Rexer M (2013) New ultrahigh-resolution picture of Earth’s gravity field. Geophys Res Lett 40:4279–4283
  • 16. Hirt C, Kuhn M, Claessens S, Pail R, Seitz K, Gruber T (2014) Study of the Earth’s short-scale gravity field using the ERTM2160 gravity model. Comput Geosci. https://doi.org/10.1016/j.cageo.2014.09.001
  • 17. Hochstein MP, Sudarman S (2008) History of geothermal exploration in Indonesia from 1970 to 2000. Geothermics 37:220–266. https://doi.org/10.1016/j.geothermics.2008.01.001
  • 18. Hochstein MP, Sudarman S (1993) Geothermal resources of Sumatra. Geothermics 22:181–200. https://doi.org/10.1016/0375-6505(93)90042-L
  • 19. Ibraheem IM, Haggag M, Tezkan B (2019) Edge detectors as structural imaging tools using aeromagnetic data: a case study of Sohag area, Egypt. Geoscience. https://doi.org/10.3390/geosciences9050211
  • 20. Ismail N, Nadra U, Yanis M (2021) Understanding volcano activity using 2D simulation models of MT data. Proc. - 2nd SEA-STEM Int. Conf. SEA-STEM 2021, pp 129–132. https://doi.org/10.1109/SEA-STEM53614.2021.9668175
  • 21. Ismail N, Yanis M, Abdullah F, Irfansyam A, Atmojo BSW (2018) Mapping buried ancient structure using gravity method: a case study from Cot Sidi Abdullah. North Aceh J Phys Conf Ser 1120:012035. https://doi.org/10.1088/1742-6596/1120/1/012035
  • 22. Jacoby W, Smilde PL (2009) Gravity interpretation: fundamentals and application of gravity inversion and geological interpretation. Springer, New York
  • 23. Kanda I, Fujimitsu Y, Nishijima J (2019) Geological structures controlling the placement and geometry of heat sources within the Menengai geothermal field, Kenya as evidenced by gravity study. Geothermics 79:67–81. https://doi.org/10.1016/j.geothermics.2018.12.012
  • 24. Keating P, Pinet N (2013) Comparison of surface and shipborne gravity data with satellite-altimeter gravity data in Hudson Bay. Lead Edge 32:450–458
  • 25. Kern M, Schwarz KP, Sneeuw N (2003) A study on the combination of satellite, airborne, and terrestrial gravity data. J Geod. https://doi.org/10.1007/s00190-003-0313-x
  • 26. Khalil MA, Santos FM, Farzamian M (2014) 3D gravity inversion and Euler deconvolution to delineate the hydro-tectonic regime in El-Arish area, northern Sinai Peninsula. J Appl Geophys. https://doi.org/10.1016/j.jappgeo.2014.01.012
  • 27. Kusche J (2007) Approximate decorrelation and non-isotropic smoothing of time-variable GRACE-type gravity field models. J Geod 81:733–749. https://doi.org/10.1007/s00190-007-0143-3
  • 28. Lee DH, Acharya TD (2017) Comparison of complete bouguer anomalies from satellite marine gravity models with shipborne gravity data in East Sea, Korea. J Mar Sci Technol. https://doi.org/10.6119/JMST-017-1226-01
  • 29. Ma XQ, Watts DR (1994) Terrain correction program for regional gravity surveys. Comput Geosci. https://doi.org/10.1016/0098-3004(94)90037-X
  • 30. Majumdar RK, Majumdar N, Mukherjee AL (2000) Geoelectric investigations in Bakreswar geothermal area, West Bengal, India. J Appl Geophys. https://doi.org/10.1016/S0926-9851(00)00028-8
  • 31. Mansoer WR, Idral A (2015) Geothermal resources development in Indonesia: a history. In: World Geothermal Congress
  • 32. Marwan A, Yanis M, Furumoto Y (2019) Lithological identification of devastated area by Pidie Jaya earthquake through poisson’s ratio analysis. Int J Geomate 17:210–216. https://doi.org/10.21660/2019.63.77489
  • 33. Marwan, Idroes R, Yanis M, Idroes GM, Syahriza (2021) A low-cost UAV based application for identify and mapping a geothermal feature in ie Jue Manifestation, Seulawah Volcano, Indonesia. Int J Geomate 20:135–142. https://doi.org/10.21660/2021.80.j2044
  • 34. Marwan M, Yanis M, Nugraha GS, Zainal M, Arahman N, Idroes R, Dharma DB, Saputra D, Gunawan P (2021) Mapping of Fault and Hydrothermal System beneath the Seulawah Volcano Inferred from a Magnetotellurics Structure. Energies 14:6091. https://doi.org/10.3390/en14196091
  • 35. Marwan, Yanis M, Idroes R, Ismail N (2019b) 2D inversion and static shift of MT and TEM data for imaging the geothermal resources of Seulawah Agam Volcano, Indonesia. Int J Geomate. https://doi.org/10.21660/2019.62.11724
  • 36. Melouah O, Pham LT (2021) An improved ILTHG method for edge enhancement of geological structures: application to gravity data from the Oued Righ valley. J Afr Earth Sci 177:104162. https://doi.org/10.1016/J.JAFREARSCI.2021.104162
  • 37. Meurers B (2018) Scintrex CG5 used for superconducting gravimeter calibration. Geod Geodyn. https://doi.org/10.1016/j.geog.2017.02.009
  • 38. Miller HG, Singh V (1994) Potential field tilt-a new concept for location of potential field sources. J Appl Geophys. https://doi.org/10.1016/0926-9851(94)90022-1
  • 39. Natawidjaja DH, Triyoso W (2007) The Sumatran fault zone—from source to hazard. J Earthq Tsunami 1:21–47
  • 40. Nishijima J, Naritomi K (2017) Interpretation of gravity data to delineate underground structure in the Beppu geothermal field central, Kyushu, Japan. J Hydrol Reg Stud. https://doi.org/10.1016/j.ejrh.2015.11.022
  • 41. Njeudjang K, Abate Essi JM, Kana JD, Teikeu WA, Njandjock Nouck P, Djongyang N, Tchinda R (2020) Gravity investigation of the Cameroon Volcanic Line in Adamawa region: geothermal features and structural control. J African Earth Sci. https://doi.org/10.1016/j.jafrearsci.2020.103809
  • 42. Oruç B, Sertçelik I, Kafadar Ö, Selim HH (2013) Structural interpretation of the Erzurum Basin, eastern Turkey, using curvature gravity gradient tensor and gravity inversion of basement relief. J Appl Geophys. https://doi.org/10.1016/j.jappgeo.2012.10.006
  • 43. Parker RL (1973) The rapid calculation of potential anomalies. Geophys J R Astron Soc 31:447–455. https://doi.org/10.1111/j.1365-246X.1973.tb06513.x
  • 44. Pirttijarvi M (2008) Gravity interpretation and modeling software based on 3-D block models. User’s Guid. to version 1
  • 45. Purnomo BJ, Pichler T (2014) Geothermal systems on the island of Java, Indonesia. J Volcanol Geotherm Res. https://doi.org/10.1016/j.jvolgeores.2014.08.004
  • 46. Qu W, Han Y, Lu Z, An D, Zhang Q, Gao Y (2020) Co-seismic and post-seismic temporal and spatial gravity changes of the 2010 Mw 8.8 maule Chile earthquake Observed by GRACE and GRACE follow-on. Remote Sens. https://doi.org/10.3390/RS12172768
  • 47. Radhakrishna M, Lasitha S, Mukhopadhyay M (2008) Seismicity, gravity anomalies and lithospheric structure of the Andaman arc, NE Indian Ocean. Tectonophysics 460:248–262. https://doi.org/10.1016/j.tecto.2008.08.021
  • 48. Rao NP, Rao CN, Hazarika P, Tiwari VM, Kumar MR, Singh A, Sharkov EV (2011) Structure and tectonics of the Andaman subduction zone from modeling of seismological and gravity data. Intech Publisher, Rijeka
  • 49. Represas P, Monteiro Santos FA, Ribeiro J, Ribeiro JA, Almeida EP, Gonçalves R, Moreira M, Mendes-Victor LA (2013) Interpretation of gravity data to delineate structural features connected to low-temperature geothermal resources at Northeastern Portugal. J Appl Geophys. https://doi.org/10.1016/j.jappgeo.2013.02.011
  • 50. Rizal M, Ismail N, Yanis M, Surbakti MS (2019) The 2D resistivity modelling on north sumatran fault structure by using magnetotelluric data. In: IOP Conference Series: Earth and Environmental Science, vol 364, No. 1, p 012036. IOP Publishing. https://doi.org/10.1088/1755-1315/364/1/012036
  • 51. Rybach L (2003) Geothermal energy: sustainability and the environment. Geothermics. https://doi.org/10.1016/S0375-6505(03)00057-9
  • 52. Saibi H, Aboud E, Ehara S (2012) Analysis and interpretation of gravity data from the Aluto-Langano geothermal field of Ethiopia. Acta Geophys 60:318–336. https://doi.org/10.2478/s11600-011-0061-x
  • 53. Santolík O, Parrot M, Lefeuvre F (2003) Singular value decomposition methods for wave propagation analysis. Radio Sci 38:1010. https://doi.org/10.1029/2000RS002523
  • 54. Silvennoinen H, Kozlovskaya E (2007) 3D structure and physical properties of the Kuhmo Greenstone Belt (eastern Finland): Constraints from gravity modelling and seismic data and implications for the tectonic setting. J Geodyn. https://doi.org/10.1016/j.jog.2006.09.018
  • 55. Surya RA, Abdullah F, Darisma D, Yanis M, Ismail N (2019) Sedimentation process in Kuala Gigieng Coast, Aceh Besar based on magnetic and gravity surveys. IOP Conf Ser Earth Environ Sci 348:012040. https://doi.org/10.1088/1755-1315/348/1/012040
  • 56. Telford WM, Telford WM, Geldart LP, Sheriff RE (1991) Applied geophysics, 2nd edn. Cambridge University Press, Cambridge
  • 57. Umam MF, Susilo J, Purba DP, Adityatama DW (2020) Design of geothermal drilling training curriculum as the implementation of the national competence standard on onshore drilling. IOP Conf Ser. https://doi.org/10.1088/1755-1315/417/1/012016
  • 58. Uwiduhaye JDA, Mizunaga H, Saibi H (2018) Geophysical investigation using gravity data in Kinigi geothermal field, northwest Rwanda. J. Afr. Earth Sci. 139:184–192. https://doi.org/10.1016/j.jafrearsci.2017.12.016
  • 59. Van Zyl JJ (2001) The shuttle radar topography mission (SRTM): a breakthrough in remote sensing of topography. In: Acta astronautica, p 559–565. https://doi.org/10.1016/S0094-5765(01)00020-0
  • 60. Witter JB, Siler DL, Faulds JE, Hinz NH (2016) 3D geophysical inversion modeling of gravity data to test the 3D geologic model of the Bradys geothermal area, Nevada, USA. Geotherm Energy. https://doi.org/10.1186/s40517-016-0056-6
  • 61. Yanis M, Abdullah F, Zaini N, Ismail N (2021) The northernmost part of the Great Sumatran Fault map and images derived from gravity anomaly. Acta Geophys 69:795–807. https://doi.org/10.1007/s11600-021-00567-9
  • 62. Yanis M, Faisal A, Yenny A, Muzakir Z, Abubakar M, Nazli I (2020a) Continuity of great sumatran fault in the marine area revealed by 3D inversion of gravity data. J Teknol 83:145–155. https://doi.org/10.11113/jurnalteknologi.v83.14824
  • 63. Yanis M, Ismail N, Abdullah F (2022a) Shallow Structure fault and fracture mapping in Jaboi Volcano, Indonesia, using VLF–EM and electrical resistivity methods. Nat Resour Res 31:335–352. https://doi.org/10.1007/s11053-021-09966-7
  • 64. Yanis M, Islami G, Ismail N (2022b) Geophysics and Geomorphic Observation For Near-Surface Structures Mapping of Seulimeum Fault on Lamtamot Area, Northern Sumatra. Bull Geol Soc Malaysia 73:139–149. https://doi.org/10.7186/bgsm73202211
  • 65. Yanis Y, Marwan M (2019) The potential use of satellite gravity data for oil prospecting in Tanimbar Basin, Eastern Indonesia. IOP Conf Ser Earth Environ Sci 364:012032. https://doi.org/10.1088/1755-1315/364/1/012032
  • 66. Yanis M, Marwan M, Kamalia N (2020b) Aplikasi Satellite GEOSAT dan ERS sebagai Metode Alternatif Pengukuran Gravity Ground pada Cekungan Hidrokarbon di Pulau Timur. Maj Geogr Indones. https://doi.org/10.22146/mgi.50782
  • 67. Yanis M, Novari I, Zaini N, Marwan, Pembonan AY, Nizamuddin (2020c) OLI and TIRS Sensor Platforms for Detection the Geothermal Prospecting in Peut Sagoe Volcano, Aceh Province, Indonesia. In: 2020c International Conference on Electrical Engineering and Informatics (ICELTICs). IEEE, pp 1–6. https://doi.org/10.1109/ICELTICs50595.2020c.9315378
  • 68. Yanis Y, Marwan M, Ismail N (2019) Efficient use of satellite gravity anomalies for mapping the great Sumatran fault in Aceh Province. Infonesian J Appl Phys 9:61. https://doi.org/10.13057/ijap.v9i2.34479
  • 69. Zaini N, Yanis M, Marwan, Isa M, van der Meer F (2021) Assessing of land surface temperature at the Seulawah Agam volcano area using the landsat series imagery. J Phys Conf Ser. https://doi.org/10.1088/1742-6596/1825/1/012021
  • 70. Zaini N, Yanis M, Abdullah F, Van Der Meer F, Aufaristama M (2022) Exploring the geothermal potential of Peut Sagoe volcano using Landsat 8 OLI/TIRS images. Geothermics 105:102499. https://doi.org/10.1016/j.geothermics.2022.102499
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-70f7d43a-0f1d-4eea-bb9b-368501735176
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.