Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
As high-alloy steel, 8Cr4Mo4V steel has been widely used in the field of high-speed aerospace bearings in recent years because of its excellent thermal strength, thermal fatigue, corrosion resistance, hardness, and thermal stability. In this article, the heat-treated high-strength tempered martensitic 8Cr4Mo4V steel is taken as the object of study with the investigation of advanced technology, such as X-ray diffractometer, scanning electron microscope, electron backscattered diffraction, etc. An in-depth and comprehensive discussion of the effects of different grinding parameters, such as depth, wheel linear velocity, cooling conditions, etc., on the microstructure of the surface metamorphic layer was carried out, and it was found that the surface metamorphic layer has an obvious microstructure gradient distribution. A new layering strategy for the metamorphic layers is proposed, from the surface to the interior in the following order: the large plastic deformation layer, the no acicular martensite layer, the mixed layer, and the matrix layer. Ultimately, the key to the formation of the large plastic deformation layer is the re-nucleation of surface austenite due to high temperatures, and the wheel assists the process of crystal orientation. Similarly, the mixed layer or the no acicular martensite layer appears as the tempered martensite reaches the phase transition temperature. The manufacturing parameters have a great influence on the gradient distribution of microstructure, and this study is intended to be a practical guide for the grinding of 8Cr4Mo4V steels.
Czasopismo
Rocznik
Tom
Strony
art. no. e42, 2024
Opis fizyczny
Bibliogr. 39 poz., rys., wykr.
Twórcy
autor
- Department of Mechanical Manufacturing and Automation, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
autor
- Department of Mechanical Manufacturing and Automation, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
autor
- Department of Mechanical Manufacturing and Automation, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
autor
- Department of Mechanical Manufacturing and Automation, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
autor
- Department of Mechanical Manufacturing and Automation, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
autor
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
autor
- Department of Mechanical Manufacturing and Automation, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
Bibliografia
- 1. Zhang S, Liu Z, He S, Wang J, Chen L. Improved double tqwt sparse representation using the mqga algorithm and new norm foraviation bearing compound fault detection. Eng Appl Artif Intell.2022;110:104741.
- 2. Wang S, Chen X, Tong C, Zhao Z. Matching synchrosqueezing wavelet transform and application to aeroengine vibration monitoring. IEEE Trans Instrum Meas. 2016;66:360–72.
- 3. Li X, Zhang K, Li W, Feng Y, Liu R. A two-stage transfer regression convolutional neural network for bearing remaining useful life prediction. Machines. 2022;10:369.
- 4. Abdullah MU, Khan ZA. A multiscale overview of modelling rolling cyclic fatigue in bearing elements. Materials. 2022;15:5885.
- 5. Wu Z, Yang M, Zhao K. Fatigue crack initiation and propagation at high temperature of new-generation bearing steel. Metals.2020;11:25.
- 6. Zhou L, Tang G, Ma X, Wang L, Zhang X. Relationship between microstructure and mechanical properties of m50 ultra-high strength steel via quenching-partitioning-tempering process.Mater Charact. 2018;146:258–66.
- 7. Liu W, Guo Y, Cao Y, Wang J, Hou Z, Sun M, Xu B, Li D. Transformation behavior of primary mc and m2c carbides in cr4mo4vsteel. J Alloy Compd. 2021;889:161755.
- 8. Zhang L, Ge PQ, Bi WB, Zhang Q. Experiment and simulationon residual stress of surface hardened layer in grind-hardening. Solid State Phenom. 2011;175:166–70.
- 9. Wang C, Fang Q, Chen J, Liu Y, Jin T. Subsurface damage in high-speed grinding of brittle materials considering kinematic characteristics of the grinding process. Int J Adv Manuf Technol.2016;83:937–48.
- 10. Zhang M, Tan Y, Zhou F, Mao C, Xie Z, Li C. Analysis of flow field in cutting zone for spiral orderly distributed fiber tool. Int JAdv Manuf Technol. 2017;92:4345–54.
- 11. Zhang X, Jiang R, Li C, Shi Z, Wen D, Wang Z, Shi Z, Jiang J.Experimental evaluation of the lubrication performance of mos2/tio 2 nanoparticles for diamond wheel bond in silicon carbide ceramic grinding. Int J Adv Manuf Technol. 2021;113:2385–93.
- 12. Zhang X, Wang Z, Shi Z, Shi Z, Jiang R, Kang Z. Improvedgrinding performance of zirconia ceramic using an innovative biomimetic fractal-branched grinding wheel inspired by leaf vein.Ceram Int. 2020;46:22954–63.
- 13. Huang X, Ren Y, Zheng B, Deng Z, Zhou Z. Experiment researchon grind-hardening of aisi5140 steel based on thermal compensation. J Mech Sci Technol. 2016;30:3819–27.
- 14. Jiang H, Yanran S, Yucheng W, Debin S, Yingying Z. Microstructure evolution and mechanical anisotropy of m50 steel ball bearing rings during multi-stage hot forging. Chin J Aeronaut.2021;34:254–66.
- 15. Du N, Liu H, Cao Y, Fu P, Sun C, Liu H, Li D. Formation mechanism of mc and m2c primary carbides in as-cast m50 bearing steel. Mater Charact. 2021;174:111011.
- 16. Wei Y, Yu X, Su Y, Wang Y, Yan G, Yang Y. Effect of different thermal treatment temperatures on dimensional stability and mechanical properties of m50 steel. J Market Res.2022;17:3047–54.
- 17. Yu X, Zheng D, Yang X, Wang S, An M, Yan G, Xia Y, Xing F.Effect of carbide precipitation behavior at high temperatures on microstructure and mechanical properties of m50 steel. J Market Res. 2022;18:1155–65.
- 18. Zhang F-Y, Duan C-Z, Wang M-J, Sun W. White and dark layer formation mechanism in hard cutting of aisi52100 steel. J Manuf Process. 2018;32:878–87.
- 19. Kumar D, Mer KKS, Payal HS, Kumar K. White-layer thicknesson edm-processed aisi a2 steel-mathematical modeling and analysis. Mater Technol. 2022;56:97–106.
- 20. Cao L, Wang G-C, Xiao Y-Y, Yang R-G. Effect of mg additionon tin inclusions in gcr15 bearing steel. J Iron Steel Res Int.2022;29:925–38.
- 21. Yi Z, Peigang H, Ning L, Zhenlin S. Material iterative development of aero carburizing gear steels. J Aeronaut Mater.2023;43:60–9.
- 22. Zhou P, Song Y, Jiang H, Wu Y, Zong Y. Hot deformation behavior and processing maps of bg801 bearing steel. J Market Res.2022;18:3725–38.
- 23. Liu W, Cao Y, Guo Y, Xu B, Sun M, Li D. Characteristics and transformation of primary carbides during austenitization in cr4mo4v bearing steel. Mater Charact. 2020;169:110636.
- 24. Li Z, Li K, Qian C, Wang D, Ji W, Wu Y, Cai Z, Liu Q. Effect of pulsed magnetic field on retained austenite of quenched 8cr4mo4vsteel under cryogenic condition. J Market Res. 2023;23:5004–15.
- 25. Niu J, Qureshi MW, Ding Z, Ma X, He Y. Effect of nitriding on the transformation of alloy carbides (vc and mo2c) in 8cr4mo4vsteel. Appl Surf Sci. 2023;610:155561.
- 26. Niu JB, Zhang XH, Ma XX, Liu Y, Wang LQ, Wu TB. Characterization of vein-like structures formed in nitrided layers during plasma nitriding of 8cr4mo4v steel. Materialia. 2022;22:101378.
- 27. Guo Y, Liu M, Yin M, Yan Y. Modeling of the evolution of the microstructure and the hardness penetration depth for a hypoeu-tectoid steel processed by grind-hardening. Metals. 2020;10:1182.
- 28. Wei M, Wu M, Xu J, Cheng Y. Influence of flank wear on the microstructure characteristics of the gh4169 metamorphic layer under high-pressure cooling. Materials. 2023;16:2944.
- 29. Wu M, Zhang J, Ma C, Zhang Y, Cheng Y, Wu S, Li L. Studyon the work hardening and metamorphic layer characteristics of milling contour bevel gears. Materials. 2022;15:7975.
- 30. Shi X, Xiu S, Liu X. Experiment study on the corrosion resistance of the surface metamorphic layer of grinding. Sci Rep.2021;11:23926.
- 31. Stead J. Micro-metallography and its practical application. J Western Scottish Iron Steel Inst. 1912;19:169–204.
- 32. Sun C, Hong Y, Xiu S, Yao Y. Grain refinement mechanism of metamorphic layers by abrasive grinding hardening. J Manuf Process. 2021;69:125–41.
- 33. Salonitis K. A hybrid cellular automata-finite element model for the simulation of the grind-hardening process. Int J Adv ManufTechnol. 2017;93:4007–13.
- 34. Liu D, Liang G, Hao X, Huang Y, Li G, Lv Z, Lv M, Al-Nehari M,Tochukwu OP. Microstructure and properties of wc/diamond/co-based gradient composite coatings on high-speed steel fabricated by laser cladding. Int J Adv Manuf Technol. 2021;117:3137–51.
- 35. Panov D, Kudryavtsev E, Naumov S, Klimenko D, Chernichenko R, Mirontsov V, Stepanov N, Zherebtsov S, Salishchev G, PertcevA. Gradient microstructure and texture formation in a metastable austenitic stainless steel during cold rotary swaging. Materials.2023;16:1706.
- 36. Yu X, Wang S, Zheng D, Wei Y, Li Y, Jin Y, Su Y. Effect of carbon concentration gradient on multi-level composite micro-structure and performance of m50nil steel. J Mater Eng Perform.2022;31:7472–83.
- 37. Zhou L, Tang G, Ma X, Wang L, Fan G. In situ observation on microstructural development of high-speed steel during carbon partitioning process. Mater Sci Technol. 2018;34:1079–85.
- 38. Kondo S, Mitsuma T, Shibata N, Ikuhara Y. Direct observation of individual dislocation interaction processes with grain boundaries. Sci Adv. 2016;2:e1501926.
- 39. Zhang B, Liu H, Zhang M, Dai C, Xie Z, Ma X, Sun Y. Metamorphic layer properties with gradient microstructure distribution of 8cr4mo4v steel by grinding. J Market Res. 2023;27:3679–90.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-70ef0218-28d2-40c8-b547-031fdf3bea08
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.