PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Foliar responses of Abie fargesii Franch. To altitude in the Taibai Mts, China

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Physiological and ecological adaptations of altitudinal gradients reveal alpine plants’ ecological and evolutionary responses to environmental changes. Here we quantitatively investigated the variation in the foliar physiological and morphological traits of alpine tree species (Abies fargesii) along the altitudinal gradient in the Taibai Mountains, China. We collected the needle samples of Taibai fir (A. fargesii) from seven sites at altitudes of 2550, 2650, 2750, 2850, 2950, 3050 and 3150 m, respectively, and measured the 12 foliar physiological and morphological traits. Each set of needle sample (100 needles) was randomly selected from the upper- third of A. fargesii canopies. The results showed that leaf mass per unit area (LMA), stable carbon isotope composition (δ13C), stomatal rows (SR), leaf carbon concentration per unit area (Carea), leaf nitrogen concentration per unit leaf mass (Nmass) and area (Narea) linearly increase significantly while stomatal density (SD), number of stomata per unit nitrogen concentration (St/N) and per unit leaf mass (St/LM) decrease with the altitudes raise. Moreover, all measured traits presented both strong correlations and significantly linear relationships with the main climate factors such as the mean temperature, rainfall and relative humidity during the growing season as well as the altitudes, except for leaf free water concentration (LWC), leaf carbon concentration per unit leaf mass (Cmass) and C: N ratio. The patterns of foliar traits in response to altitudes imply that the alpine plants need higher cost (e.g. higher nutrient concentration) to adapt to the harsher environments along altitudinal gradient. Moreover, our results show that the variation patterns of the leaf traits for A. fargesii plants should be driven by the interactions of multi-climate factors because the abiotic factors that directly influence the growth of plants covary with the increasing altitudes.
Rocznik
Strony
479--492
Opis fizyczny
Bibliogr. 46 poz., il.
Twórcy
autor
  • School of Life Science, Lanzhou University, Lanzhou 730000, China
autor
  • College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 73000, China
autor
  • School of Life Science, Lanzhou University, Lanzhou 730000, China
autor
  • School of Life Science, Lanzhou University, Lanzhou 730000, China
autor
  • School of Life Science, Lanzhou University, Lanzhou 730000, China
autor
  • Northwest Institute of Plateau Biology, the Chinese Academy of Sciences, Xining 810001, China
autor
  • School of Life Science, Lanzhou University, Lanzhou 730000, China
autor
  • School of Life Science, Lanzhou University, Lanzhou 730000, China
Bibliografia
  • 1. Bresson C.C., Vitasse Y., Kremer A., Delzon S. 2011 – To what extent is altitudinal variation of functional traits driven by genetic adaptation in European oak and beech? – Tree Physiol. 31: 1164–1174.
  • 2. Chang Y.M., Jiang Y.G. 1990 – Developing and using of Abies nephrolepis (Trautv.) Maxim resources – China Wild Plant, 1: 26–28 (in Chinese, English summary).
  • 3. Cordell S., Goldstein G., Mueller-Dombois D., Webb D., Vitousek P.M. 1998 – Physiological and morphological variation in Metrosideros polymorpha, a dominant Hawaiian tree species, along an altitudinal gradient: role of phenotypic plasticity – Oecologia, 113: 188–196.
  • 4. Cordell S., Goldstein G., Meinzer F.C., Handley L.L. 1999 – Allocation of nitrogen and carbon in leaves of Metrosideros polymorpha regulates carboxylation capacity and δ13C along an altitudinal gradient – Funct. Ecol. 13: 811–818.
  • 5. Deng J.M., Li T., Wang G.X. Yu Z.L., Ji M.F., Zhang Q., Liu J.Q. 2008 – Tradeoffs between the metabolic rate and population density of plants – PLoS One, 3: 1799.
  • 6. Deng J.M., Zuo W.Y., Wang Z.Q., Fan Z.X., Wang G.X., Ran J.Z., Zhao C.M., Liu J.Q., Niklas K.J., Hammond S.T., Brown J.H. 2012 – Insights into plant sizedensity relationships from models and agricultural crops – P. Natl. Acad. Sci. USA, 109: 8600–8605.
  • 7. Enquist B.J., West G.B., Brown J.H. 2009 – Extensions and evaluations of a general quantitative theory of forest structure and dynamics - P. Natl. Acad. Sci. USA, 106: 7046–7051.
  • 8. Fan J.S. 1998 – Comparison of the essential oil of Abies fargesii and Abies chensiensis van Tiegh - J. Northwest For. Coll. 13: 42–44 (in Chinese, English summary).
  • 9. Farquhar G.D., Ehleringer J.R., Hubick K.T. 1989 – Carbon isotope discrimination and photosynthesis – Ann. Rev. Plant Physiol. Mol. Bio. 40: 503–537.
  • 10. Ferreira T., Ribeiro E., Duarte-Rodrigues P., Boavida M.J. 2012 – Altitudinal gradients in a volcanic island: effect on biodiversity and species richness of the dipteran fauna – Pol. J. Ecol. 60: 591–599.
  • 11. Fu B.P., Yu J.M., Li Z.Y. 1982 – The microclimate characteristics in summer of Mt. Taibai, Qinling Mountains – Acta Geogr Sin. 37: 88–97 (in Chinese, English summary).
  • 12. Grace J., Berninger F., Nagy L. 2002 – Impacts of climate change at the treeline – Ann. Bot. 90: 537–554.
  • 13. Gratani L., Catoni R., Pirone G., Frattaroli A.R., Varone L. 2012 – Physiological and morphological leaf trait variations in two Apennine plant species in response to different altitudes – Photosynthetica, 1: 15–23.
  • 14. Hovenden J.M., Bordribb T. 2000 – Altitude of origin influences stomatal conductance and therefore maximum assimilation rate in southern Beech Nothofagus cunninghamii – Aust. J. Plant Physiol. 27: 451– 456.
  • 15. Hultine K.R., Marshall J.D. 2000 – Altitude trends in conifer leaf morphology and stable carbon isotope composition – Oecologia, 123: 32–40.
  • 16. Ji M.F., Zhang X.W., Wang Z.Q., Zhang Q., Deng J.M. 2011 – Intra-versus interpopulation variation of cone and seed morphological traits of Pinus tabulaeformis Carr. in northern China: impact of climate-related conditions – Pol. J. Ecol. 59: 381–389.
  • 17. Körner C. 2007 – The use of ‘altitude’ in ecological research – Trends Ecol. Evol. 22: 569–570.
  • 18. Körner C., Farquhar G.D., Wong S.C. 1991 – Carbon isotope discrimination by plants follows latitudinal and altitudinal trends - Oecologia, 88: 30–40.
  • 19. Körner C., Neumayer M., Palaez Menendez-Reidl S., Smeets-Scheel A. 1989 - Functional morphology of mountain plants - Flora, 182: 353–383.
  • 20. Körner C., Cochrane P. 1985 – Stomatal responses and water relations of Eucalyptus pauciflora in summer along an elevational gradient - Oecologia, 74: 443– 455.
  • 21. Lei M., Chen T.B., Feng L.X., Chang Q.R., Yan X. 2001 – Soil formation factors and comparison among different altitudinal zonations of the soils on northern slope of the Taibai Mountains – Geogr Res. 20: 583–592 (in Chinese, English summary).
  • 22. Leroux D., Stock W.D., Bond W.J., Maphanga D. 1996 – Dry mass allocation, water use efficiency and δ13C in clones of Eucalyptus grandis, E. grandis × camaldulensis and E.grandis × nitens grown under two irrigation regimes – Tree Physiol. 16: 497–502.
  • 23. Li C.Y., Xu G., Zang R.G., Korpelainen H., Berninger F. 2007 – Sex-related differences in leaf morphological and physiological responses in Hippophae rhamnoides along an altitudinal gradient – Tree Physiol. 27: 399–406.
  • 24. Li C.Y., Wang K. 2003 – Differences in drought responses of three contrasting Eucalyptus microtheca F. Muell. populations – Forest Ecol Manag. 179: 377–385.
  • 25. Li C., Yang Y., Junttila O., Palva E.T. 2005 – Sexual differences in cold acclimation and freezing tolerance development in sea buckthorn (Hippophae rhamnoides L.) ecotypes - Plant Sci. 168: 1365–1370.
  • 26. Luo J.X., Zang R.G., Li C.Y. 2006 – Physiological and morphological variations of Picea asperata populations originating from different altitudes in the mountains of southwest China – Forest Ecol. Manag. 221: 285–290.
  • 27. Magnani F., Borghetti M. 1995 – Interpretation of seasonal changes of xylem embolism and plant hydraulic resistance in Fagus sylvatica - Plant Cell Environ. 18: 689–696.
  • 28. Matteodo M., Wipf S., Stöckli1 V., Rixen C., Vittoz P. 2013 – Elevation gradient of successful plant traits for colonizing alpine summits under climate change – Environ. Res. Lett. 8: 024043.
  • 29. Peng G., Wu C.C., Xu X., Yang D.M. 2012 - The age-related changes of leaf structure and biochemistry in juvenile and mature subalpine fir trees (Abies faxoniana Rehder & E.H. Wilson.) along an altitudinal gradient – Pol. J. Ecol. 60: 311–321.
  • 30. Qiang W.Y., Wang X.L., Chen T., Feng H.Y., An L.Z, He Y.Q., Wang G. 2003 - Variations of stomatal density and carbon isotope values of Picea crassifolia at different altitudes in the Qilian Mountain – Trees, 17: 258–262.
  • 31. Ran F., Zhang X.L., Zhang Y.B., Korpelainen H., Li C.Y. 2013 – Altitudinal variation in growth, photosynthetic capacity and water use efficiency of Abies faxoniana Rehd. et Wils. seedlings as revealed by reciprocal transplantations – Trees, 5: 1405–1416.
  • 32. Schimel D.S., House J.I., Hibbard K.A. et al. 2001 – Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems – Nature, 414: 169–172.
  • 33. Sparks J.P., Ehleringer J.R. 1997 – Leaf carbon isotope discrimination and nitrogen content for riparian trees along elevational transects - Oecologia, 109: 362–367.
  • 34. Tang Z.Y., Fang J.Y., Zhang L. 2004 – Patterns of woody plant species diversity along environmental gradients on Mt. Taibai, Qinling Mountains – Biodivers Sci. 12: 115–122 (in Chinese, English summary).
  • 35. Ter Braak C.J.F., Smilauer P. 2012 – CANOCO Reference Manual and User’s Guide: Software for Ordination. Version 5. – Microcomputer Power Ithaca, New York.
  • 36. Thomas S.C. 2011 – Genetic vs. phenotypic responses of trees to altitude – Tree Physiol. 11: 1161–1163.
  • 37. Van de Water P.K., Leavitt S.W., Betancourt J.L. 1994 – Trends in stomatal density and 13C/12C ratio of Pinus flexilis needles during last glacial-interglacial cycle – Science, 264: 239–243.
  • 38. Van de Water P.K., Leavitt S.W., Betancourt J.L. 2002 – Leaf δ13C variability with elevation, slope aspect and precipitation in the southwest United States – Oecologia, 132: 332–343.
  • 39. Van de Weg M.J., Meir P., Grace J., Atkin O.K. 2009 – Altitudinal variation in leaf mass per unit area, leaf tissue density and foliar nitrogen and phosphorus content along an Amazon-Andes gradient in Peru – Plant Ecol. Divers, 3: 243–254.
  • 40. Warren C.R., McGrath J.F., Adams M.A. 2001 – Water availability and carbon isotope discrimination in conifers – Oecologia, 127: 476–486.
  • 41. Yan J.C. 1988 – Oil chemical components analysis of Abies fargesii leaves – For. Sci. Technol. Jilin. Prov. 4: 4–36 (in Chinese, English summary).
  • 42. Yu Q., Xie Z.Q., Xiong G.M., Chen Z.G., Yang J.Y. 2008 – Community characteristics and population structure of dominant species of Abies fargesii forest in Shennongjia National Nature Reserve – Acta Ecol. Sin. 28: 1931–1941.
  • 43. Zhang S.B., Zhou Z.K., Hu H., Xu K., Yan N., Li S.Y. 2005 – Photosynthetic performances of Quercus pannosa vary with altitude in the Hengduan Mountains, southwest China - For. Sci. Technol. Jilin. Prov. 212: 291–301.
  • 44. Zhang X.L., Wu, N., Li C. 2005 – Physiological and growth responses of Populus davidiana ecotypes to different soil water contents - J. Arid Environ. 60: 567–579.
  • 45. Zhang X.L., Zang R.G., Li C.Y. 2004 – Population differences in physiological and morphological adaptations of Populus davidiana seedlings in response to progressive drought stress – Plant Sci. 166: 791–797.
  • 46. Zhao C.M., Chen L.T., Ma F., Yao B.Q., Liu J.Q. 2008 – Altitudinal differences in the leaf fitness of juvenile and mature alpine spruce trees (Picea crassifolia) – Tree Physiol. 28: 133–141.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-70ee68fc-5f7b-43cd-9e1d-4e19ab0e734c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.