PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the energy efficiency in the heatproof nozzle of the pneumatic pulsator system during supersonic airflow

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article, a study of supersonic airflow through a channel with various cross-section is presented. The channel is namely a heatproof nozzle which is used in a pneumatic pulsator system. The system utilizes a pneumatic impact to destructor to avoid of the creation of unfavourable phenomena which comes from cohesion forces. The pneumatic pulsator system is driven by compressed air and a high-velocity airflow is induced by the difference between internal and external air pressure. This flow changes its characteristics during a work cycle of the pulsator from subsonic to supersonic conditions. It causes a very dynamic gas conversion and may produce additional heat inside the pulsator and its nozzle. The article presents a method for calculating the value of the heat which can be generated inside the heatproof nozzle. The results of the study shows that the small amount of energy is lost during the airflow which can generate an increment of heatproof nozzle wall temperature.
Rocznik
Strony
155--161
Opis fizyczny
Bibliogr. 20 poz., rys., wykr.
Twórcy
  • Warsaw University of Technology, Faculty of Civil Engineering, Mechanics and Petrochemistry, Institute of Mechanical Engineering, Łukasiewicza 17, 09-400 Płock, Poland
autor
  • Warsaw University of Technology, Faculty of Civil Engineering, Mechanics and Petrochemistry, Institute of Mechanical Engineering, Łukasiewicza 17, 09-400 Płock, Poland
Bibliografia
  • 1. Quaatz, J. F., Giglmaier, M., Hickel, S., Adams, N. A. (2014). Large-eddy simulation of a pseudo-shock system in a Laval nozzle. International Journal of Heat and Fluid Flow, 49(C), 108–115.
  • 2. Yuan, W., Sauer, J., Schnerr, G. H. (2001). Modeling and computation of unsteady cavitation flows in injection nozzles. Mécanique & industries, 2139, 383–394.
  • 3. Hemidi, A., Henry, F., Leclaire, S., Seynhaeve, J. M., Bartosiewicz, Y. (2009). CFD analysis of a supersonic air ejector. Part I: Experimental validation of single-phase and two-phase operation. Applied Thermal Engineering, 29(8–9), 1523–1531.
  • 4. Lin, C., Cai, W., Li, Y., Yan, J., Hu, Y., Giridharan, K. (2013). Numerical investigation of geometry parameters for pressure recovery of an adjustable ejector in multi-evaporator refrigeration system. Applied Thermal Engineering, 61(2), 649–656.
  • 5. Zhu, Y., Cai, W., Wen, C., Li, Y. (2009). Numerical investigation of geometry parameters for design of high performance ejectors. Applied Thermal Engineering, 29(5–6), 898–905.
  • 6. Zhu, Y., Jiang, P. (2014). Experimental and analytical studies on the shock wave length in convergent and convergent-divergent nozzle ejectors. Energy Conversion and Management, 88, 907–914.
  • 7. Lee, K. H., Setoguchi, T., Matsuo, S., Kim, H. D. D. (2003). The Effect of the Secondary Annular Stream on Supersonic Jet, 17(11), 1793–1800.
  • 8. Wołosz, K. J., Wernik, J. (2016). On the heat in the nozzle of the industrial pneumatic pulsator. Acta Mechanica, 227(4), 1111–1122.
  • 9. Wołosz, K. J., Wernik, J. (2014). The improvement of the pneumatic pulsator nozzle according to the results of the continuous adjoint for topology optimization. Logistyka: czasopismo dla profesjonalistów, (6), 11007–11013.
  • 10. Wolosz, K. J., Wernik, J. (2015). Three-dimensional flow optimization of a nozzle with a continuous adjoint. International Journal of Nonlinear Sciences and Numerical Simulation, 16(3–4).
  • 11. OpenFOAM. (2017). The Open Source Computational Fluid Dynamics (CFD) Toolbox. User Guide by OpenFOAM.
  • 12. Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA journal, 32(8), 1598–1605.
  • 13. Tu, J., Yeoh, G., Liu, C. (2013). Computational uid dynamics. A practical approach. Amsterdam: Elsevier.
  • 14. Wołosz, K. J. (2018). Exergy destruction in the pneumatic pulsator system during one working cycle. Energy, 146, 124–130.
  • 15. Utyuzhnikov, S. V. (2008). Robin-type wall functions and their numerical implementation. Applied Numerical Mathematics, 58(10), 1521–1533.
  • 16. Jasak, H., Gosman, A. D. (2003). Element residual error estimate for the finite volume method. Computers & Fluids, 32(2), 223–248.
  • 17. Ferziger, J. H., Peric, M. (2003). Computational methods for fluid dynamics. Computers & Mathematics with Applications(Vol. 46). Springer.
  • 18. Freitas, C. J. (2002). The issue of numerical uncertainty. Applied Mathematical Modelling, 26(2), 237–248.
  • 19. Szumowski, A., Selerowicz, W., Piechna, J. (1988). Gas dynamics (in Polish). Warsaw: WUT Publishing.
  • 20. Lunev, V. (2009). Real Gas Flows with High Velocities. Boca Raton: CRC Press.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-70ee149d-021a-438d-bb0e-54cbee54d198
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.