PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Space and time variability of meteorological drought in Syria

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study assesses the spatial and temporal characteristics (e.g., frequency, intensity, spatial extent) of meteorological drought in Syria. Specifcally, drought was characterized using the observed rainfall data from 36 rain gauges spanning the period between 1990 and 2010 and covering the main climatic regions in Syria (i.e., Mediterranean, arid, semiarid and mountainous). Meteorological drought was assessed using the standardized precipitation index (SPI) at 12-month timescale, allowing for detecting the impacts of climate variability on agricultural droughts. The dominant modes of drought were defned using an S-mode of the principal component analysis. To assess the links between meteorological drought evolution and vegetation greening in Syria, the time series of SPI were correlated with the normalized diference vegetation index (NDVI). Time series of NDVI were retrieved from the remotely sensed National Oceanic and Atmospheric Administration Advanced Very High-Resolution Radiometer (NOAA/AVHRR) sensor at a spatial resolution of 25 km for the common period 1990–2010. Trend analysis suggests a statistically signifcant increase in the frequency and intensity of drought at 12-month timescale. The observed intensifcation of meteorological drought is mostly associated with the increase in mild and moderate droughts, relative to extremes and very extreme droughts. Results also suggest a statistically signifcant decrease (p<0.05) in vegetation greening over Syria during the study period, especially in the eastern parts of the country. Our results demonstrate that the decrease in vegetation cover can directly be linked to the anomalous drought events, with Pearson’ r coefcients generally above 0.6. This dependency was more highlighted during wintertime for the Mediterranean vegetation and in northeastern portions of the country. Overall, the increase in the frequency and intensity of meteorological drought, combined with a series of unrest and political instability, have drastic impacts on the agricultural sector in Syria, with serious implications for crop yield
Czasopismo
Rocznik
Strony
1877--1898
Opis fizyczny
Bibliogr. 149 poz.
Twórcy
  • Institution of Land Utilization, Technology and Regional Planning, University of Debrecen, Debrecen 4032, Hungary
  • Department of Geography and GIS, Faculty of Arts, Alexandria University, Alexandria 25435, Egypt
  • Department of Geography, Sultan Qaboos University, Al Khoud, Muscat, Oman
  • Department of Geography, Sultan Qaboos University, Al Khoud, Muscat, Oman
  • Department of Geography, Faculty of Arts, Zagazig University, Zagazig, Egypt
  • Institution of Land Utilization, Technology and Regional Planning, University of Debrecen, Debrecen 4032, Hungary
  • National Agricultural Research and Innovation Center, Institute of Agricultural Engineering, Tessedik Sámuel 4, Gödöllő H-2100, Hungary
  • Department of Geography, Sultan Qaboos University, Al Khoud, Muscat, Oman
  • Department of Geography, Mansoura University, Mansoura 35516, Egypt
Bibliografia
  • 1. Abdo HG (2018) Impacts of war in Syria on vegetation dynamics and erosion risks in Safita area, Tartous, Syria. Region Environ Change 18:1707–1719
  • 2. Abu Hajar HA, Murad YZ, Shatanawi KM, Al-Smadi BM, Abu Hajar YA (2019) Drought assessment and monitoring in Jordan using the standardized precipitation index. Arab J Geosci 12:417
  • 3. Agnew CT (2000) Using the SPI to identify drought. Drought Network News 12:6–12
  • 4. Ahlström A, Raupach MR, Schurgers G, Smith B, Arneth A, Jung M et al (2015) The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348:895–899
  • 5. Aladaileh H, Al Qinna M, Karoly B, Al-Karablieh E, Rakonczai J (2019) An investigation into the spatial and temporal variability of the meteorological drought in Jordan. Climate 7:82
  • 6. Al-Bakri JT, Suleiman AS (2004) NDVI response to rainfall in different ecological zones in Jordan. Int J Remote Sens 25:3897–3912
  • 7. Al-Qinna MI, Hammouri NA, Obeidat MM, Ahmad FY (2011) Drought analysis in Jordan under current and future climates. Clim Change 106:421–440
  • 8. Alsafadi K, Mohammed SA, Ayugi B, Sharaf M, Harsányi E (2020) Spatial-temporal evolution of drought characteristics over Hungary between 1961 and 2010. Pure appl Geophys 1:1–18
  • 9. Al-Youssef A, Shaaban A, Suliman A, Mazid A, Naal Y, Khoja S (2016) Economics of wheat production in the work area of the project of enhancing food security in Arab Countries/Syria. Syrian J Agric Res 3(2):75–87 (in Arabic)
  • 10. Asadi Zarch MA, Sivakumar B, Sharma A (2015) Droughts in a warming climate: a global assessment of Standardized precipitation index (SPI) and Reconnaissance drought index (RDI). J Hydrol 526:183–195
  • 11. Azorin-Molina C, Vicente-Serrano SM, Sanchez-Lorenzo A, McVicar TR, Morán-Tejeda E, Revuelto J et al (2015) Atmospheric evaporative demand observations, estimates and driving factors in Spain (1961–2011). J Hydrol 523:262–277
  • 12. Barlow M, Zaitchik B, Paz S, Black E, Evans J, Hoell A (2016) A review of drought in the middle east and southwest Asia. J Clim 29:8547–8574
  • 13. Breshears DD, Cobb NS, Rich PM, Price KP, Allen CD, Balice RG et al (2005) Regional vegetation die-off in response to global-change-type drought. Proc Natl Acad Sci USA 102:15144–15148
  • 14. Butler CD (2018) Climate change, health and existential risks to civilization: a comprehensive review (1989–2013). Int J Environ Res Public Health 15:2266
  • 15. Buttafuoco G, Caloiero T, Coscarelli R (2015) Analyses of drought events in Calabria (Southern Italy) using standardized precipitation index. Water Resour Manage 29:557–573
  • 16. Cai W, van Rensch P, Borlace S, Cowan T (2011) Does the Southern Annular Mode contribute to the persistence of the multidecade-long drought over southwest Western Australia? Geophys Res Lett 1:38
  • 17. Cai W, Purich A, Cowan T, Pv Rensch, Weller E (2014) Did climate change-induced rainfall trends contribute to the Australian millennium drought? J Clim 27:3145–3168
  • 18. Caloiero T (2018) SPI trend analysis of New Zealand applying the ITA technique. Geosciences 8:101
  • 19. Caloiero T, Veltri S, Caloiero P, Frustaci F (2018a) Drought analysis in europe and in the mediterranean basin using the standardized precipitation index. Water 10:1043
  • 20. Caloiero T, Sirangelo B, Coscarelli R, Ferrari E (2018b) Occurrence probabilities of wet and dry periods in southern Italy through the SPI evaluated on synthetic monthly precipitation series. Water 10:336
  • 21. Cammalleri C, Barbosa P, Vogt JV (2019) Analysing the relationship between multiple-timescale SPI and GRACE terrestrial water storage in the framework of drought monitoring. Water 11(8):1672
  • 22. Cook BI, Anchukaitis KJ, Touchan R, Meko DM, Cook ER (2016) Spatiotemporal drought variability in the Mediterranean over the last 900 years. J Geophys Res Atmosp 121:2060–2074
  • 23. Dabanli İ, Mishra AK, Şen Z (2017) Long-term spatio-temporal drought variability in Turkey. J Hydrol 552:779–792
  • 24. De Châtel F (2014) The role of drought and climate change in the syrian uprising: untangling the triggers of the revolution. Middle Eastern Studies 50:521–535
  • 25. De Pauw E (2005) Monitoring agricultural drought in the near east. In: Boken VK, Cracknell AP, Heathcote RL (eds) Monitoring and predicting agricultural drought. Oxford University Press, New York
  • 26. Deng Y, Wang S, Bai X, Tian Y, Wu L, Xiao J et al (2018) Relationship among land surface temperature and LUCC, NDVI in typical karst area. Sci Rep 8:641
  • 27. Didan K, Munoz AB, Solano R, Huete A (2015) MODIS vegetation index user’s guide (MOD13 Series). University of Arizona, Vegetation Index and Phenology Lab
  • 28. Domínguez-Castro F, García-Herrera R, Ribera P, Barriendos M (2010) A shift in the spatial pattern of Iberian droughts during the 17th century. Clim Past 6:553–563
  • 29. Drumond A, Nieto R, Hernandez E, Gimeno L (2011) A Lagrangian analysis of the variation in moisture sources related to drier and wetter conditions in regions around the Mediterranean Basin. Nat Hazards Earth Syst Sci 11:2307–2320
  • 30. Dutra E, Pozzi W, Wetterhall F, Di Giuseppe F, Magnusson L, Naumann G et al (2014) Global meteorological drought—part 2: seasonal forecasts. Hydrol Earth Syst Sci 18:2669–2678
  • 31. Eklund L, Thompson D (2017) Differences in resource management affects drought vulnerability across the borders between Iraq, Syria, and Turkey. Ecology and Society 22(4):1
  • 32. El Kenawy A, López-Moreno JI, Vicente-Serrano SM (2013) Summer temperature extremes in northeastern Spain: spatial regionalization and links to atmospheric circulation (1960–2006). Theoret Appl Climatol 113:387–405
  • 33. El Kenawy AM, McCabe MF, Vicente-Serrano SM, Robaa SM, López -Moreno JI (2016a) Recent changes in continentality and aridity conditions over the Middle East and North Africa region, and their association with circulation patterns. Climate Res 69:25–43
  • 34. El Kenawy AM, McCabe MF, Vicente-Serrano SM, López-Moreno JI, Robaa SM (2016b) Changes in the frequency and severity of meteorological droughts over Ethiopia from 1960 to 2013. Cuadernos De Investigación Geográfica 42(2):1
  • 35. El Kenawy AM, Al Buloshi A, Al-Awadhi T, Al Nasiri N, Navarro-Serrano F et al (2020) Evidence for intensification of meteorological droughts in Oman over the past four decades. Atmos Res 246:105126
  • 36. Esau I et al (2016) Trends in normalized difference vegetation index (NDVI) associated with urban development in northern West Siberia. Atmos Chem Phys 16:9563–9577
  • 37. Evans JP (2009) 21st century climate change in the Middle East. Clim Change 92(3–4):417–432. https://doi.org/10.1007/s10584-008-9438-5
  • 38. Fern RR et al (2018) Suitability of NDVI and OSAVI as estimators of green biomass and coverage in a semi-arid rangeland. Ecol Ind 94:16–21
  • 39. Gao X, Giorgi F (2008) Increased aridity in the Mediterranean region under greenhouse gas forcing estimated from high resolution simulations with a regional climate model. Global Planet Change 62:195–209
  • 40. Gilmore EA, Herzer Risi L, Tennant E, Buhaug H (2018) Bridging research and policy on climate change and conflict. Current Climate Change Reports 4:313–319
  • 41. Giorgi F (2006) Climate change hot-spots. Geophys Res Lett 33:1
  • 42. Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Global Planet Change 63:90–104
  • 43. Gleick PH (2014) Water, drought, climate change, and conflict in Syria. Weather, Climate, and Society 6:331–340
  • 44. Golian S, Mazdiyasni O, AghaKouchak A (2015) Trends in meteorological and agricultural droughts in Iran. Theoret Appl Climatol 119:679–688
  • 45. González-Hidalgo JC, Vicente-Serrano SM, Peña-Angulo D, Salinas C, Tomas-Burguera M, Beguería S (2018) High-resolution spatio-temporal analyses of drought episodes in the western Mediterranean basin (Spanish mainland, Iberian Peninsula). Acta Geophys 66:381–392
  • 46. Gouveia CM, Trigo RM, Beguería S, Vicente-Serrano SM (2017) Drought impacts on vegetation activity in the Mediterranean region: an assessment using remote sensing data and multi-scale drought indicators. Global Planet Change 151:15–27
  • 47. Gumus V, Algin HM (2017) Meteorological and meteorological drought analysis of the Seyhan—Ceyhan River Basins. Turkey. Met. Apps 24:62–73
  • 48. Haensel S, Zurba K (2015) Precipitation characteristics and trends in the Palestinian territories during the period 1951–2010. FOG-FREIBERG Online Geosci. 39:103–130
  • 49. Hamed KH, Ramachandra Rao A (1998) A modified Mann-Kendall trend test for autocorrelated data. J Hydrol 204:182–196
  • 50. Hameed M, Ahmadalipour A, Moradkhani H (2018) Apprehensive drought characteristics over Iraq: results of a multidecadal spatiotemporal assessment. Geosciences 8:58
  • 51. Hayes M, Svoboda M, Wall N, Widhalm M (2011) The lincoln declaration on drought indices: universal meteorological drought index recommended. Bull Am Meteor Soc 92(4):485–488
  • 52. Hoerling M, Eischeid J, Perlwitz J, Quan X, Zhang T, Pegion P (2012) On the increased frequency of mediterranean drought. J Clim 25:2146–2161
  • 53. Hollinger SE, Isard SA, Welford MR (1993) A new soil moisture drought index for predicting crop yields. In: Preprints, Eighth Conference on Applied Climatology, Anaheim, CA, Am Meteor Soc, pp 187–190
  • 54. Ide T (2018) Climate war in the middle east? Drought, the Syrian civil war and the state of climate-conflict research. Current Climate Change Reports 4:347–354
  • 55. IPCC (2013) Climate change 2013: the physical science basis. In: Stocker TF et al. (ed) Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, p 1535
  • 56. Jain VK, Pandey RP, Jain MK, Byun H-R (2015) Comparison of drought indices for appraisal of drought characteristics in the Ken River Basin. Weather Climate Extremes 8:1–11
  • 57. Jr RRH (2002) A review of twentieth-century drought indices used in the United States. Bull Am Meteor Soc 83:1149–1166
  • 58. Kaiser HF (1991) Coefficient alpha for a principal component and the Kaiser-Guttman Rule. Psychol Rep 68:855–858
  • 59. Kelley CP, Mohtadi S, Cane MA, Seager R, Kushnir Y (2015) Climate change in the Fertile Crescent and implications of the recent Syrian drought. Proc Natl Acad Sci 112:3241–3246
  • 60. Khayyati M (2016) Drought impact assessment on rural livelihood systems in Iran. Ecol Ind 69:850–858
  • 61. Kostopoulou E, Giannakopoulos C, Krapsiti D, Karali A (2017) Temporal and spatial trends of the standardized precipitation index (SPI) in Greece using observations and output from regional climate models. Springer, Cham, pp 475–481
  • 62. Kubiak-Wójcicka K, Bąk B (2018) Monitoring of meteorological and meteorological droughts in the Vistula basin (Poland). Environ Monit Assess 190(11):691
  • 63. Lelieveld J, Hadjinicolaou P, Kostopoulou E, Chenoweth J, El Maayar M, Giannakopoulos C et al (2012) Climate change and impacts in the Eastern Mediterranean and the Middle East. Clim Change 114:667–687
  • 64. Li W, Fu R, Juárez RIN, Fernandes K (2008) Observed change of the standardized precipitation index, its potential cause and implications to future climate change in the Amazon region. Philos Trans R Soc Lond B Biol Sci 363:1767–1772
  • 65. Liu X, Wang S, Zhou Y, Wang F, Li W, Liu W (2015) Regionalization and Spatiotemporal Variation of Drought in China Based on Standardized Precipitation Evapotranspiration Index (1961–2013). Adv Meteorol 2015:18
  • 66. Ljungqvist FC, Krusic PJ, Sundqvist HS, Zorita E, Brattström G, Frank D (2016) Northern Hemisphere hydroclimate variability over the past twelve centuries. Nature 532:94
  • 67. Lu D (2006) The potential and challenge of remote sensing-based biomass estimation. Int J Remote Sens 27(7):1297–1328. https://doi.org/10.1080/01431160500486732
  • 68. Mahfouz P, Mitri G, Jazi M, Karam F (2016) Investigating the temporal variability of the standardized precipitation index in Lebanon. Climate 4:27
  • 69. Manning JG, Ludlow F, Stine AR, Boos WR, Sigl M, Marlon JR (2017) Volcanic suppression of Nile summer flooding triggers revolt and constrains interstate conflict in ancient Egypt. Nat Commun 8:900
  • 70. Mariotti A, Dell’Aquila A (2012) Decadal climate variability in the Mediterranean region: roles of large-scale forcings and regional processes. Clim Dyn 38:1129–1145
  • 71. Mathbout S, Lopez-Bustins JA, Martin-Vide J, Bech J, Rodrigo FS (2018) Spatial and temporal analysis of drought variability at several time scales in Syria during 1961–2012. Atmos Res 200:153–168
  • 72. McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. In: Proceedings of the 8th conference on applied climatology, American Meteorological Society, pp 179–184
  • 73. Merabti A, Martins DS, Meddi M et al (2018) Spatial and time variability of drought based on SPI and RDI with various time scales. Water Resour Manage 32:1087–1100. https://doi.org/10.1007/s11269-017-1856-6
  • 74. Mishra AK, Singh VP (2010) A review of drought concepts. J Hydrol 391:202–216
  • 75. Mo KC, Lyon B (2015) Global meteorological drought prediction using the North American Multi-Model ensemble. J Hydrometeorol 16:1409–1424
  • 76. Mohammed SA, Fallah RQ (2019) Climate change indicators in Alsheikh-Badr Basin (Syria). Geogr Environ Sustainabil 12(2):87–96
  • 77. Mohammed SA, Harsányi E (2019) Drought cycle tracking in Hungary using Standardized Precipitation Index (SPI). Acta Agraria Debreceniensis 2:97–101
  • 78. Mohammed SA, Alkerdi A, Harsányi E, János N (2019a) Syrian crisis repercussions on the agricultural sector: case study of wheat, cotton and olives. Region Sci Policy Practice 1:1. https://doi.org/10.1111/rsp3.12222
  • 79. Mohammed S, Alsafadi K, Mohammad S, Mousavi N (2019). Drought trends in Syria from 1900 to 2015. In: Proceedings of the 4th international congress of developing agriculture, natural resources, environment and tourism of Iran, Tabriz Islamic Art University In cooperation with Shiraz University and Yasouj University, Tabriz, Iran, vol 14
  • 80. Mohammed S, Alsafadi K, Daher H, Gombos B, Mahmood S, Harsányi E (2020a) Precipitation pattern changes and response of vegetation to drought variability in the eastern Hungary. Bull Natl Res Centre 44:1–10
  • 81. Mohammed S, Alsafadi K, Talukdar S, Kiwan S, Hennawi S, Alshiehabi O et al (2020b) Estimation of soil erosion risk in southern part of Syria by using RUSLE integrating geo informatics approach. Rem Sens Appl Soc Environ 1:100375
  • 82. Mohammed S, Khallouf A, Kiwan S, Alhenawi S, Ali H, Harsányi E et al (2020c) Characterization of major soil orders in Syria. Euras Soil Sci 53:420–429
  • 83. Moradi HR, Rajabi M, Faragzadeh M (2011) Investigation of meteorological drought characteristics in Fars province, Iran. CATENA 84:35–46
  • 84. Mukherjee A, Wang S-YS, Promchote P (2019) Examination of the climate factors that reduced wheat yield in Northwest India during the 2000s. Water 11:343
  • 85. Mustafa A, Rahman G (2018) Assessing the spatio-temporal variability of meteorological drought in Jordan. Earth Syst Environ 2:247–264
  • 86. Myneni RB, Hall F, Sellers P, Marshak A (1995) The interpretation of spectral vegetation indexes. IEEE Trans Geosci Remote Sens 33:481–486
  • 87. Nalbantis I, Tsakiris G (2009) Assessment of meteorological drought revisited. Water Resour Manage 23:881–897
  • 88. Naumann G, Alfieri L, Wyser K, Mentaschi L, Betts RA, Carrao H et al (2018) Global changes in drought conditions under different levels of warming. Geophys Res Lett 45:3285–3296
  • 89. Nelson GC, Valin H, Sands RD, Havlík P, Ahammad H, Deryng D et al (2014) Climate change effects on agriculture: economic responses to biophysical shocks. Proc Natl Acad Sci 111:3274–3279
  • 90. Nicault A, Alleaume S, Brewer S, Carrer M, Nola P, Guiot J (2008) Mediterranean drought fluctuation during the last 500 years based on tree-ring data. Clim Dyn 31:227–245
  • 91. Orians CM, Schweiger R, Dukes JS, Scott ER, Müller C (2019) Combined impacts of prolonged drought and warming on plant size and foliar chemistry. Ann Bot 124:41–52
  • 92. Ozturk M, Gucel S, Sakcali S, Gork C, Yarci C, Gork G (2008) An overview of plant diversity and land degradation interactions in the eastern mediterranean. Nat Environ Cult Mediterr Region 1:215–239
  • 93. Palmer WC (1965) Meteorological drought. Research Paper No. 45, 1965, p 58, U.S. Dep. Commer. Weather Bur. Washington, DC. Research
  • 94. Parece TE, Campbell JB (2017) Assessing urban community gardens’ impact on net primary production using NDVI, Urban Agriculture & Regional Food Systems
  • 95. Pascoa P, Gouveia CM, Russo A, Trigo RM (2017) Drought trends in the Iberian Peninsula over the last 112 years. Adv Meteorol 2017:13
  • 96. Philandras CM, Nastos PT, Kapsomenakis J, Douvis KC, Tselioudis G, Zerefos CS (2011) Long term precipitation trends and variability within the Mediterranean region. Nat Hazards Earth Syst Sci 11(12):3235–3250. https://doi.org/10.5194/nhess-11-3235-2011
  • 97. Qatna H (2010) The drought affected the north-eastern region of Syria between 2008–2009. Organization of Syrian economics science, Damascus, Syria (In Arabic)
  • 98. Rashid MM, Beecham S (2019) Development of a non-stationary Standardized Precipitation Index and its application to a South Australian climate. Sci Tot Environ 657:882–892
  • 99. Richman MB (1986) Rotation of principal components. J Climatol 6:293–335
  • 100. Robaa S, Al-Barazanji Z (2015) Mann-Kendall trend analysis of surface air temperatures and rainfall in Iraq. Idojaras 119:493–514
  • 101. Roy DP et al (2002) The MODIS Land product quality assessment approach. Remote Sens Environ 83:62–76
  • 102. Ruffault J, Martin-StPaul NK, Duffet C, Goge F, Mouillot F (2014) Projecting future drought in Mediterranean forests: bias correction of climate models matters! Theoret Appl Climatol 117:113–122
  • 103. Saglamoglu A, Irvem A (2020) Regional drought analysis for the eastern Mediterranean region of Turkey using run and SPI method. Fresenius Environ Bull 26:1256–1262
  • 104. Sahoo AK, Sheffield J, Pan M, Wood EF (2015) Evaluation of the tropical rainfall measuring mission multi-satellite precipitation analysis (TMPA) for assessment of large-scale meteorological drought. Remote Sens Environ 159:181–193
  • 105. Salah Z, Nieto R, Drumond A, Gimeno L, Vicente-Serrano SM (2018) A Lagrangian analysis of the moisture budget over the Fertile Crescent during two intense drought episodes. J Hydrol 560:382–395
  • 106. Salameh A, Fallah R (2018) Changes in air temperature and precipitation over the Syrian Coastal Region. Cuadernos Geográficos 57(3):140–151
  • 107. Schneider AW, Adalı SF (2014) “No harvest was reaped”: demographic and climatic factors in the decline of the Neo-Assyrian Empire. Clim Change 127:435–446
  • 108. Schubert SD, Stewart RE, Wang H, Barlow M, Berbery EH, Cai W et al (2016) Global meteorological drought: a synthesis of current understanding with a focus on SST drivers of precipitation deficits. J Clim 29:3989–4019
  • 109. Seager R, Liu H, Henderson N, Simpson I, Kelley C, Shaw T et al (2014) Causes of increasing aridification of the mediterranean region in response to rising greenhouse gases. J Clim 27:4655–4676
  • 110. Selby J, Dahi OS, Fröhlich C, Hulme M (2017) Climate change and the Syrian civil war revisited. Polit Geogr 60:232–244
  • 111. Shafer BA, Dezman LE (1982) Development of a surface water supply index (SWSI) to assess the severity of drought conditions in snowpack runoff areas. In: Proceedings of the West. Snow Conference, pp 164–175
  • 112. Shah R, Bharadiya N, Manekar V (2015) Drought index computation using standardized precipitation index (SPI) method for Surat District, Gujarat. Aquat Procedia 4:1243–1249
  • 113. Sheffield J, Andreadis KM, Wood EF, Lettenmaier DP (2009) Global and continental drought in the second half of the Twentieth century: severity–area–duration analysis and temporal variability of large-scale events. J Clim 22:1962–1981
  • 114. Shukla S, Wood AW (2008) Use of a standardized runoff index for characterizing hydrologic drought. Geophys Res Lett 35:1
  • 115. Sobral BS, Oliveira-Júnior JFd, de Gois G, Pereira-Júnior ER, Terassi PMdB, Muniz-Júnior JGR et al (2019) Drought characterization for the state of Rio de Janeiro based on the annual SPI index: trends, statistical tests and its relation with ENSO. Atmos Res 220:141–154
  • 116. Solh M, van Ginkel M (2014) Drought preparedness and drought mitigation in the developing world׳s drylands. Weather Clima Extremes 3:62–66
  • 117. Spinoni J, Vogt JV, Naumann G, Barbosa P, Dosio A (2018) Will drought events become more frequent and severe in Europe? Int J Climatol 38:1718–1736
  • 118. Spinoni J, Barbosa P, De Jager A, McCormick N, Naumann G, Vogt JV et al (2019) A new global database of meteorological drought events from 1951 to 2016. J Hydrol Region Stud 22:100593
  • 119. Stahl K (2001) Meteorological drought—a study across Europe. Albert-Ludwigs Universität Freiburg, Freiburg
  • 120. Stojanovic M, Drumond A, Nieto R, Gimeno L (2018) Variations in moisture supply from the mediterranean sea during meteorological drought episodes over Central Europe. Atmosphere 9:278
  • 121. Tan C, Yang J, Li M (2015) Temporal-spatial variation of drought indicated by SPI and SPEI in Ningxia Hui Autonomous region. China. Atmosphere 6(10):1399–1421
  • 122. Tanarhte M, Hadjinicolaou P, Lelieveld J (2012) Intercomparison of temperature and precipitation data sets based on observations in the Mediterranean and the Middle East. J Geophys Res Atmos 117(D12):1. https://doi.org/10.1029/2011JD017293
  • 123. Terink W, Immerzeel WW, Droogers P (2013) Climate change projections of precipitation and reference evapotranspiration for the Middle East and Northern Africa until 2050. Int J Climatol 33:3055–3072
  • 124. Teuling AJ, Van Loon AF, Seneviratne SI, Lehner I, Aubinet M, Heinesch B, Bernhofer C, Grünwald T, Prasse H, Spank U (2013) Evapotranspiration amplifies European summer drought. Geophys Res Lett 40:2071–2075. https://doi.org/10.1002/grl.50495
  • 125. Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8:127–150
  • 126. Turco M, von Hardenberg J, AghaKouchak A, Llasat MC, Provenzale A, Trigo RM (2017) On the key role of droughts in the dynamics of summer fires in Mediterranean Europe. Sci Rep 7:81
  • 127. Van Lanen HAJ, Van Loon AF (2012) A process-based typology of hydrological drought. Hydrol Earth Syst Sci 16:1915–1946. https://doi.org/10.5194/hess-16-1915-2012
  • 128. Van Loon AF (2015) Hydrological drought explained. WIREs. Water 2:359–392. https://doi.org/10.1002/wat2.1085
  • 129. van Rooy MP (1965) A rainfall anomaly index independent of time and space. Notos 14:43–48
  • 130. Vasiliades L, Loukas A, Liberis N (2011) A water balance derived drought index for pinios river Basin, Greece. Water Resourc Manag 25:1087–1101
  • 131. Vicente-Serrano SM (2006) Differences in spatial patterns of drought on different time scales: an analysis of the Iberian Peninsula. Water Resour Manage 20:37–60
  • 132. Vicente-Serrano SM, Cuadrat-Prats JM (2007) Trends in drought intensity and variability in the middle Ebro valley (NE of the Iberian Peninsula) during the second half of the twentieth century. Theoret Appl Climatol 88:247–258
  • 133. Vicente-Serrano SM, López-Moreno JI (2006) The influence of atmospheric circulation at different spatial scales on winter drought variability through a semi-arid climatic gradient in Northeast Spain. Int J Climatol 26:1427–1453
  • 134. Vicente-Serrano SM, Beguería S, López-Moreno JI (2010) A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J Clim 23:1696–1718
  • 135. Vicente-Serrano SM, López-Moreno JI, Lorenzo-Lacruz J, Kenawy AE, Azorin-Molina C, Morán-Tejeda E et al (2011) The NAO impact on droughts in the mediterranean region. In: Vicente-Serrano SM, Trigo RM (eds) Hydrological, socioeconomic and ecological impacts of the North Atlantic oscillation in the mediterranean region. Springer, Dordrecht, pp 23–40
  • 136. Vicente-Serrano SM, Lopez-Moreno JI, Beguería S, Lorenzo-Lacruz J, Sanchez-Lorenzo A, García-Ruiz JM, Azorin-Molina C, Morán-Tejeda E, Revuelto J, Trigo R, Coelho F, Espejo F (2014) Evidence of increasing drought severity caused by temperature rise in southern Europe. Environ Res Lett 9:1. https://doi.org/10.1088/1748-9326/9/4/044001
  • 137. Vicente-Serrano SM, Azorin-Molina C, Peña-Gallardo M, Tomas-Burguera M, Domínguez-Castro F, Martín-Hernández N et al (2019) A high-resolution spatial assessment of the impacts of drought variability on vegetation activity in Spain from 1981 to 2015. Nat Hazards Earth Syst Sci 19:1189–1213
  • 138. Vicente-Serrano SM, McVicar TR, Miralles DG, Yang Y, Tomas-Burguera M (2020) Unraveling the influence of atmospheric evaporative demand on drought and its response to climate change. Rev Clim Chang 11:1. https://doi.org/10.1002/wcc.632
  • 139. Vidal JP, Martin E, Franchistéguy L, Habets F, Soubeyroux JM, Blanchard M et al (2010) Multilevel and multiscale drought reanalysis over France with the Safran-Isba-Modcou hydrometeorological suite. Hydrol Earth Syst Sci 14:459–478
  • 140. Wang B, An S-I (2005) A method for detecting season-dependent modes of climate variability: S-EOF analysis. Geophys Res Lett 32
  • 141. Wang Y et al (2019) Spatio-temporal analysis of phenology in Yangtze River Delta based on MODIS NDVI time series from 2001 to 2015. Front Earth Sci 13:92–110
  • 142. Wilhite DA, Glantz MH (2009) Understanding: the drought phenomenon: the role of definitions. Water International 10:111–120
  • 143. Winkler K, Gessner U, Hochschild V (2017) Identifying droughts affecting agriculture in Africa based on remote sensing time series between 2000–2016: rainfall anomalies and vegetation condition in the context of ENSO. Remote Sens 9:831
  • 144. Woli P, Jones JW, Ingram KT, Fraisse CW (2012) Agricultural reference index for drought (ARID). Agron J 104:287–300
  • 145. World Meteorological Organization (2012) Guidelines on the selection of Reference Climatological Stations (RCSs) from the existing Climatological Station Network. 1986. WMO/TD-No. 130. World Climate Programme, WMO, Geneva, Switzerland.World Meteorological Organization. Standardized Precipitation Index User Guide. (M. Svoboda, M. Hayes and D. Wood). WMO-No. 1090. Geneva. ISBN 978-92-63-11091-6. 2012, p 16
  • 146. Xu C, Li Y, Hu J, Yang X, Sheng S, Liu M (2012) Evaluating the difference between the normalized difference vegetation index and net primary productivity as the indicators of vegetation vigor assessment at landscape scale. Environ Monit Assess 184:1275–1286
  • 147. Xue J, Su (2017) Significant remote sensing vegetation indices: a review of developments and applications. J Sens 1353691
  • 148. Zargar A, Sadiq R, Naser B, Khan FI (2011) A review of drought indices. Environ Rev 19:333–349. https://doi.org/10.1139/a11-013
  • 149. Zhang Y et al (2019) Mapping annual forest cover by fusing PALSAR/PALSAR-2 and MODIS NDVI during 2007–2016. Rem Sens Environ 224:74–91
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-70ea6703-c5c1-418e-ac58-86ce5ff9aa98
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.