PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Experimental and finite element analysis of PPF controller effectiveness in composite beam vibration suppression

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper the problem of vibration reduction is considered. Generally, mechanical vibrations occurring during the operation of a system are undesirable and may have a negative effect on its reliability. A finite element model of a single active blade is developed using the Abaqus software. This structure consists of a multi-layer glass-epoxy composite beam with an embedded macro fiber composite (MFC) piezoelectric actuator. For vibration control the use of a positive position feedback (PPF) controller is proposed. To include the PPF controller in the Abaqus software, a special subroutine is created. The developed control algorithm code makes it possible to solve an additional differential equation by the fourth order RungeKutta method. A numerical dynamic analysis is performed by the implicit procedure. The beam responses with and without controller activation are compared. The control subsystem model also includes the hysteresis phenomenon of the piezoelectric actuator. Numerical findings regarding the PPF controller’s effectiveness are verified experimentally.
Rocznik
Strony
468--477
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
  • Lublin University of Technology, Faculty of Mechanical Engineering, Department of Applied Mechanics, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
  • Lublin University of Technology, Faculty of Mechanical Engineering, Department of Applied Mechanics, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
Bibliografia
  • 1. Abaqus 6.14 documentation, <http://130.149.89.49:2080/v6.11/pdf_books/CAE.pdf> (08.04.2022).
  • 2. Albaghdadi AM, Baharom M, Sulaiman S. Hybrid methodology using balancing optimization and vibration analysis to suppress vibrations in a double crank-rocker engine. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2022; 24(1): 53-61, http://doi.org/10.17531/ein.2022.1.7.
  • 3. Fenik S, Starek L. Optimal PPF controller for multimodal vibration suppression. Engineering Mechanics 2008; 15(3): 153-173.
  • 4. Gan J, Zhang X. Nonlinear hysteresis modeling of piezoelectric actuators using a generalized Bou-Wen model. Micromachines 2019; 10(3):1-12, https://doi.org/10.3390/mi10030183.
  • 5. Gao JX, An ZW, Ma Q, Bai XZ. Residual strength assessment of wind turbine rotor blade composites under combined effects of natural aging and fatigue loads. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2020; 22(4): 601–609, http://dx.doi.org/10.17531/ein.2020.4.3.
  • 6. Gawryluk J, Mitura A, Teter A. Dynamic control of kinematically excited laminated, thin-walled beam using macro fibre composite actuator. Composite Structures 2020; 236(2): 1-7, https://doi.org/10.1016/j.compstruct.2020.111898.
  • 7. Gawryluk J, Mitura A, Teter A. Dynamic response of a composite rotating at constant speed caused by harmonic excitation with MFC actuator. Composite Structures 2019; 210: 657-662, https://doi.org/10.1016/j.compstruct.2018.11.083.
  • 8. Hamed YS, Kandil A, Machado JT. Utilizing Macro Fiber Composite to control rotating blade vibrations. Symmetry 2020; 12: 1-23, https://doi:10.3390/sym12121984.
  • 9. Kedra R, Rucka M. Modelling of mechanical behaviour of high-frequency piezoelectric actuators using Bouc-Wen model. Metrology and measurement systems 2017; 24(2): 413-424, https://doi:10.1515/mms-2017-0022.
  • 10. Kilikevicius A, Rimsa V, Rucki M. Investigation of influence of aircraft propeller modal parameters on small airplane performance. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2020; 22(1): 1-5, http://dx.doi.org/10.17531/ein.2020.1.1.
  • 11. Kwak MK, Heo S. Active vibration control of smart grid structure by multiinput and multioutput positive position feedback controller. Journal of Sound and Vibration 2007; 304: 230-245, https://doi.org/10.1016/j.jsv.2007.02.021.
  • 12. Li CX, Li LL, Gu GY, Zhu LM. Modeling of rate-dependent hysteresis in piezoelectric actuators using a Hammerstein-like structure with a modified Bouc-Wen model. Intelligent robotics and applications 2016: 672–684, https://doi:10.1007/978-3-319-43506-0_58.
  • 13. Liu Y, Shan J, Gabbert U, Qi N. Hysteresis and creep modeling and compensation for a piezoelectric actuator using a fractional-order Maxwell resistive capacitor approach. Smart Materials Structures 2013; 22(11): 1–12, https://doi.org/10.1088/0964-1726/22/11/115020.
  • 14. Mitura A, Gawryluk J, Teter A. Numerical and experimental studies on the rotating rotor with three active composite blades. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2017; 19(4): 571–579, http://dx.doi.org/10.17531/ein.2017.4.11.
  • 15. Mitura A, Warminski J. Influence of piezoelectric actuator hysteresis on saturation control efficiency. Proceedings of the Institution of Mechanical Engineers. Part C: Journal of Mechanical Engineering Science 2020; 235(20): 4749-4759, https://doi.org/10.1177/0954406220946066.
  • 16. Padoin E, Fonseca JSO, Perondi EA, Menuzii O. Optimal placement of piezoelectric macro fiber composite patches on composite plates for vibration suppression. Latin American Journal of Solids and Structures 2015; 12(5): 925-947, https://doi.org/10.1590/1679-78251320.
  • 17. Panayotov F, Dobrev I, Massouh F, Todorov M. Experimental study of a helicopter rotor model in hover. Matec Web of Conferences 2018; 234: 1-5, https://doi.org/10.1051/matecconf/201823401002.
  • 18. Parafiniak M, Skalski P. Vibration testing of a helicopter main rotor composite blade. Prace Instytutu Lotnictwa 2011; 218: 72-76.
  • 19. Romanski L, Bieniek J, Komarnicki P, et al. Operational tests of a dual-rotor mini wind turbine, Eksploatacja i Niezawodnosc – Maintenance and Reliability 2016; 18(2): 201–209, http://dx.doi.org/10.17531/ein.2016.2.7.
  • 20. Smart materials, <http://www.smart-material.com/MFC-product-mainV2.html> (08.04.2022).
  • 21. Vadiraja DN, Sahasrabudhe AD. Vibration analysis and optimal control of rotating pre-twisted thin-walled beams using MFC actuators and sensors. Thin-Walled Structures 2009; 47(5): 555-567, https://doi.org/10.1016/j.tws.2008.10.004.
  • 22. Wilbur ML, Wilkie K. Active-twist rotor control applications for UAVs. Transformational Science and Technology for the Current and Future Force. Proceedings of the 24th US Army Science Conference, 2006: 185-192.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-70e92ec8-cae7-4656-a490-f53f02bc9f3f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.