PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the use of Na2SO3 as a pyrite depressant in saline systems and the presence of kaolinite

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effect of Na2SO3 as a pyrite depressant in NaCl and KCl saline media and the presence of kaolinite were evaluated by zeta potential tests. Chalcopyrite was also included in the study, because pyrite usually accompanies this mineral. Subsequently, the floatability results of both minerals in the NaCl solution were optimized based on the design of experiments (DoE). The Box–Behnken DoE was applied considering the percentage of kaolinite (X1), collector dose (X2), and depressant dose (X3) as factors. The results were modeled using artificial neural networks (ANNs) to construct contour plots and to determine the optimal conditions. In particular, maximization of the mass recovery of chalcopyrite and minimization of that of pyrite were sought. The particle swarm optimization algorithm was used as an optimization technique. The results indicated that the optimal conditions to maximize the floatability of chalcopyrite were kaolinite 6.85%, collector dose 3.58 × 10–3 mol/dm3, and depressant dose 3.49 × 10–5 mol/dm3. On the contrary, the optimal conditions to minimize the floatability of pyrite were 5% kaolinite, collector dose 5 × 10–4 mol/dm3, and depressant dose 6.4 × 10–5 mol/dm3. Under these conditions, the mass recoveries of chalcopyrite and pyrite were 66.1% and 14.0%, respectively. The results also indicated that the presence of kaolinite negatively affects the flotation of chalcopyrite, while the effect of Na2SO3 is not significant. In general, the findings suggest that Na2SO3 is a viable alternative to consider as a pyrite depressant in saline environments.
Słowa kluczowe
Rocznik
Strony
168--179
Opis fizyczny
Bibliogr. 43 poz., rys. kolor.
Twórcy
  • Departamento de Ingeniería Química y Procesos de Minerales, Universidad de Antofagasta, Chile
  • Csiro-Chile International Center of Excellence, Las Condes, Santiago, Chile
  • Escuela de Ingeniería Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
  • Departamento de Ingeniería en Minas, Universidad de Antofagasta, Chile
  • Departamento de Ingeniería Química y Procesos de Minerales, Universidad de Antofagasta, Chile
Bibliografia
  • ARANCIBIA-BRAVO, M.P., LOPEZ-VALDIVIESO, A., CISTERNAS, L.A., 2020. Effects of Potassium Propyl Xanthate Collector and Sodium Sulfite Depressant on the Floatability of Chalcopyrite in Seawater and KCl Solutions. Minerals. https://doi.org/10.3390/min10110991
  • ARANCIBIA-BRAVO, M.P., LUCAY, F.A., LÓPEZ, J., CISTERNAS, L.A., 2019. Modeling the effect of air flow , impeller speed , frother dosages , and salt concentrations on the bubbles size using response surface methodology. Minerals Engineering 132, 142–148.
  • ARIAS, D., RIVAS, M., GUIÑEZ, R., CISTERNAS, L.A., 2018. Modeling the calcium and magnesium removal from seawater by immobilized biomass of ureolytic bacteria bacillus subtilis through response surface methodology and artificial neural networks. Desalination and Water Treatment 118, 294–303.
  • ARIAS, D., VILLCA, G., PÁNICO, A., CISTERNAS, L.A., JELDRES, R.I., GONZÁLEZ-BENITO, G., RIVAS, M., 2020. Partial desalination of seawater for mining processes through a fluidized bed bioreactor filled with immobilized cells of Bacillus subtilis LN8B. Desalination 482, 114388.
  • BEZERRA, M.A., SANTELLI, R.E., OLIVEIRA, E.P., VILLAR, L.S., ESCALEIRA, L.A., 2008. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76, 965–77.
  • BOX G. AND BEHNKEN D., 1960. Technometrics Some New Three Level Designs for the Study of Quantitative Variables Some New Three Level Designs for the Study of Quantitative Variables. Technometrics 455–475.
  • BULATOVIC, S., WYSLOUZIL, D.M., 1995. Selection and evaluation of different depressants systems for flotation of complex sulphide ores. Minerals Engineering 8, 63–76.
  • CASTRO, S., LASKOWSKI, J.S., 2011. Froth flotation in saline water. KONA Powder and Particle Journal 29, 4–15.
  • CISTERNAS, L., MORENO, L., 2014. Seawater in Mining: Fundamentals and Applications (in Spanish). Master Ril, Santiago, Chile.
  • CISTERNAS, L.A., GÁLVEZ, E.D., 2018. The use of seawater in mining. Mineral Processing and Extractive Metallurgy Review 39.
  • CISTERNAS, L.A., LUCAY, F.A., BOTERO, Y.L., 2020. Trends in modeling, design, and optimization of multiphase systems in minerals processing. Minerals. https://doi.org/10.3390/min10010022
  • FAIRTHORNE, G., FORNASIERO, D., RALSTON, J., 1996. Solution properties of thionocarbamate collectors. 46, 137–153.
  • FARROKHROUZ, M., HAGHI, H., 2009. The application of Hallimond tube for floatability study of pure Galena. 13th Conference on Environment and Mineral Processing 89–96. https://doi.org/10.13140/2.1.2825.6969
  • FU, P., LIN, X., WANG, L., MA, Y., 2020. Applied Clay Science Catalytic ozonation of refractory O -isopropyl- N -ethylthionocarbamate collector with coexisted kaolinite in sulfide flotation wastewaters. Applied Clay Science 198, 105834.
  • FUERSTENAU M. AND SABACKYAB B., 1981. On the natural floatability of sulfides. International journal of minerals processing 8, 79–84.
  • FULLSTON, D., FORNASIERO, D., RALSTON, J., 1999. Zeta potential study of the oxidation of copper sulfide minerals. Colloids and Surfaces A: Physicochemical and Engineering Aspects 146, 113–121.
  • GARUD, S.S., KARIMI, I.A., KRAFT, M., 2017. Design of computer experiments: A review. Computers and Chemical Engineering 106, 71–95.
  • HAGA, K., TONGAMP, W., SHIBAYAMA, A., 2012. Investigation of Flotation Parameters for Copper Recovery from Enargite and Chalcopyrite Mixed Ore. Materials Transactions 53, 707–715.
  • HERRERA-LEÓN, S., CRUZ, C., KRASLAWSKI, A., CISTERNAS, L.A., 2019. Current situation and major challenges of desalination in Chile. Desalination and water treatment 171, 93–104.
  • JELDRES, R.I., FORBES, L., CISTERNAS, L.A., 2016. Effect of Seawater on Sulfide Ore Flotation: A Review. Mineral Processing and Extractive Metallurgy Review 37, 369–384.
  • JELDRES, R.I., URIBE, L., CISTERNAS, L.A., GUTIERREZ, L., LEIVA, W.H., VALENZUELA, J., 2019. The effect of clay minerals on the process of flotation of copper ores - A critical review. Applied Clay Science 170.
  • JIN, R., CHEN, W., SIMPSON, T.W., 2001. Comparative studies of metamodelling techniques under multiple modelling criteria. Struct Multidisc Optim 1–13.
  • KACHITVICHYANUKUL, V., 2012. Comparison of Three Evolutionary Algorithms : GA, PSO, and DE. Industrial Engineering and Management Systems 11, 215–223.
  • KYDROS K. , ANGELIDIS T., . MATIS K., 1993. Selective flotation of an auriferous bulk pyrite arsenopyrite concentrate in presence of sodium sulphoxy - salts. Minerals Engineering 6, 1257–1264.
  • LEPPINEN J.O., 1988. FTIR Study of Thionocarbamate Adsorption on Sulfide Minerals. Colloids and Surfaces 32, 113–125.
  • LI, Y., LI, W., XIAO, Q., HE, N., REN, Z., LARTEY, C., GERSON, A., 2017. The Influence of Common Monovalent and Divalent Chlorides on Chalcopyrite Flotation. Minerals 7, 111.
  • LIU, D., PENG, Y., 2014. Reducing the entrainment of clay minerals in flotation using tap and saline water. Powder Technology 253, 216–222.
  • LÓPEZ VALDIVIESO A., 2005. Flotación de calcopirita , pirita y molibdenita en minerales de cobre tipo pórfidos, in: X Simposio Sobre Procesamiento de Minerales. Chillan, Chile, pp. 1–29.
  • LUCAY, F.A., SALES-CRUZ, M., GÁLVEZ, E.D., CISTERNAS, 2020. Modeling of the Complex Behavior through an Improved Response Surface Methodology Modeling of the Complex Behavior through an Improved Response Surface Methodology. Mineral Processing and Extractive Metallurgy Review 00, 1–27.
  • MA, M., BRUCKARD, W.J., MCCALLUM, D., 2012. Role of Water Structure-Making / Breaking Ions in the Cationic Flotation of Kaolinite : Implications for Iron Ore Processing. International Journal of Mining Engineering and Mineral Processing 1, 17–20.
  • MIKI, H., HIRAJIMA, T., MUTA, Y., SUYANTARA, G.P.W., SASAKI, K., 2018. Effect of sodium sulfite on floatability of chalcopyrite and molybdenite. Minerals 8. https://doi.org/10.3390/min8040172
  • MOLAEI, N., HOSEINIAN, F.S., REZAI, B., 2018. A study on the effect of active pyrite on flotation of porphyry copper ores. Physicochemical Problems of Mineral Processing 54, 922–933.
  • MU, Y., PENG, Y., LAUTEN, R.A., 2016. The depression of pyrite in selective flotation by different reagent systems – A Literature review. Minerals Engineering 96–97, 143–156.
  • OJHA, V.K., ABRAHAM, A., SNÁSEL, V., 2017. Metaheuristic Design of Feedforward Neural Networks: A Review of Two Decades of Research. Engineering Applications of Artificial Intelligence 60, 97–116.
  • PAREDES A., ACUÑA S., GUTIERREZ L., T.P., 2019. Zeta Potential of Pyrite Particles in Concentrated Solutions of Monovalent Seawater Electrolytes and Amyl Xanthate. Minerals. https://doi.org/10.3390/min9100584
  • SHEHATA, A.M., NASR-EL-DIN, H.A., 2015. Zeta Potential Measurements: Impact of Salinity on Sandstone Minerals 13–15. SPE International Symposium on Oilfield Chemistry, The Woodlands, Texas, USA https://doi.org/10.2118/173763-ms
  • URIBE, L., GUTIERREZ, L., LASKOWSKI, J.S., CASTRO, S., 2017. Role of calcium and magnesium cations in the interactions between kaolinite and chalcopyrite in seawater. Physicochemical Problems of Mineral Processing 53, 737-749.
  • URIBE, L.M., 2017. Efecto del agua de mar en la recuperación de minerales de cobre-molibdeno por procesos de flotación. Universidad de Concepción. Concepción, Chile.
  • XIAO, G., ZHU, Z., 2010. Friction materials development by using DOE/RSM and artificial neural network. Tribology International 43, 218–227.
  • YADAV, A.M., CHAURASIA, R.C., SURESH, N., GAJBHIYE, P., 2018. Application of artificial neural networks and response surface methodology approaches for the prediction of oil agglomeration process. Fuel 220, 826–836.
  • YADAV, A.M., NIKKAM, S., GAJBHIYE, P., TYEB, M.H., 2017. Modeling and optimization of coal oil agglomeration using response surface methodology and artificial neural network approaches. International Journal of Mineral Processing 163, 55–63.
  • ZHANG, Y., LIU, R., SUN, W., WANG, L., DONG, Y., WANG, C., 2020. Electrochemical mechanism and flotation of chalcopyrite and galena in the presence of sodium silicate and sodium sulfite. Transactions of Nonferrous Metals Society of China 30, 1091–1101.
  • ZULFIQAR, M., FAKHRUL, M., SAMSUDIN, R., SUFIAN, S., 2019. Chemistry Modelling and optimization of photocatalytic degradation of phenol via TiO2 nanoparticles : An insight into response surface methodology and artificial neural network. Journal of Photochemistry & Photobiology, A: Chemistry 384, 112039
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-70e752c5-739a-408b-aaa8-866cc5401be8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.