PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research on the post-weld explosive hardening of AA7075-T651 friction stir welded butt joints

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the post-weld explosive hardening of a 5 mm AA7075-T651 plate welded via FSW was performed. To investigate the possibility of increasing FSW joint mechanical properties, the welded plate was explosively treated with four various explosive materials (ammonal, emulsion explosive, FOX-7, and PBX) in two different hardening systems. As part of the investigation, the observations of the surface and macrostructure of the treated plates were described. The obtained microhardness distribution allowed us to register the increase in hardness of the SZ up to 6%, but no increase in hardness of the LHZ was reported. In most cases, the influence of explosive treatment on the mechanical properties of the welded joint was disadvantageous as ultimate tensile strength and ductility were reduced. The only positive effect which was observed is the increase in the value of yield strength up to 27% corresponding to 77 MPa, achieved by explosive materials with detonation velocity below 3000 m/s.
Rocznik
Strony
art. no. e145685
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
  • Faculty of Mechanical Engineering, Military University of Technology, 2 gen. S. Kaliskiego St., Warsaw, Poland
  • Łukasiewicz Research Network – Institute of Industrial Organic Chemistry, 6 Annopol St., Warsaw, Poland
  • Faculty of Mechanical Engineering, Military University of Technology, 2 gen. S. Kaliskiego St., Warsaw, Poland
  • Faculty of Mechanical Engineering, Military University of Technology, 2 gen. S. Kaliskiego St., Warsaw, Poland
  • Łukasiewicz Research Network – Institute of Industrial Organic Chemistry, 6 Annopol St., Warsaw, Poland
  • Łukasiewicz Research Network – Institute of Industrial Organic Chemistry, 6 Annopol St., Warsaw, Poland
Bibliografia
  • [1] P. Myśliwiec, R.E. Śliwa, R. Ostrowski, M. Bujny, and M. Zwolak, “Effect of Welding Parameters and Metal Arrangement of the AA2024-T3 on the Quality and Strength of FSW Lap Joints for Joining Elements of Landing Gear Beam,” Arch. Metall. Mater., vol. 65, no. 3, pp. 1205–1216, 2020, doi: 10.24425/amm.2020.133240.
  • [2] R. Kosturek, J. Torzewski, M. Wachowski, and L. ´Snie˙zek, “Effect of Welding Parameters on Mechanical Properties and Microstructure of Friction Stir Welded AA7075-T651 Aluminum Alloy Butt Joints,” Materials, vol. 15, no. 17, p. 5970, Jan. 2022, doi: 10.3390/ma15175950.
  • [3] Z. Wang et al., “Microstructure and Properties of Friction Stir Welded 2219 Aluminum Alloy under Heat Treatment and Electromagnetic Forming Process,” Metals, vol. 8, no. 5, p. 305, May 2018, doi: 10.3390/met8050305.
  • [4] T. Kawashima et al., “Femtosecond Laser Peening of Friction Stir Welded 7075-T73 Aluminum Alloys,” J. Mater. Process. Technol., vol. 262, pp. 111–122, Dec. 2018, doi: 10.1016/j.jmatprotec.2018.06.022.
  • [5] M. Cabibbo, C. Paoletti, M. Ghat, A. Forcellese, and M. Simoncini, “Post-FSW Cold-Rolling Simulation of ECAP Shear Deformation and Its Microstructure Role Combined to Annealing in a FSWed AA5754 Plate Joint,” Materials, vol. 12, no. 9, p. 1526, Jan. 2019, doi: 10.3390/ma12091526.
  • [6] M. Toursangsaraki and Y. Hu, “Crystal plasticity evaluation of laser peening effects on improving high-cycle fatigue life of Al-Li friction stir welded joints,” Mater. Des., vol. 223, p. 111147, Nov. 2022, doi: 10.1016/j.matdes.2022.111147.
  • [7] M. Bucior, R. Kluz, A. Kubit, and K. Ochał, “Analysis of the Possibilities of Improving the Selected Properties Surface Layer of Butt Joints Made Using the FSW Method,” Adv. Sci. Technol. Research Journal, vol. 14, no. 1, pp. 1–9, 2020, doi: 10.12913/22998624/111662.
  • [8] A. Ali et al., “The effect of controlled shot peening on the fatigue behaviour of 2024-T3 aluminium friction stir welds,” nt. J. Fatigue, vol. 29, no. 8, pp. 1531–1545, Aug. 2007, doi: 10.1016/j.ijfatigue.2006.10.032.
  • [9] R. Kosturek, L. Śnieżek, M. Wachowski, and J. Torzewski, “The Influence of Post-Weld Heat Treatment on the Microstructure and Fatigue Properties of Sc-Modified AA2519 Friction Stir-Welded Joint,” Materials, vol. 12, no. 4, p. 583, Feb. 2019, doi: 10.3390/ma12040583.
  • [10] J. Nowaczewski, M. Kita, J. ´Swieczak, and J. Rudnicki, “Explosive and thermochemical treatment of multi-layer metallic composites,” High Energy Mater., vol. 11, no. 1, pp. 39–44, 2019, doi: 10.22211/matwys/0066E.
  • [11] F.C. Zhang et al., “Explosion hardening of Hadfield steel crossing,” Mater. Sci. Technol., vol. 26, no. 2, pp. 223–229, 2010, doi: 10.1179/174328408X363263.
  • [12] J. Gronostajski and W. Palczewski, “The effects of explosive hardening on the mechanical properties and structure of HSLA steels,” J. Mech. Working Technol., vol. 18, no. 3, pp. 293–303, Mar. 1989, doi: 10.1016/0378-3804(89)90088-0.
  • [13] N. Djordjevic et al., “Modelling of shock waves in fcc and bcc metals using a combined continuum and dislocation kinetic approach,” Int. J. Plast., vol. 105, pp. 211–224, Jun. 2018, doi: 10.1016/j.ijplas.2018.02.014.
  • [14] K. Mroczka, A. Wójcicka, and A. Pietras, “Characteristics of Dissimilar FSW Welds of Aluminum Alloys 2017A and 7075 on the Basis of Multiple Layer Research,” J. Mater. Eng. Perform., vol. 22, no. 9, pp. 2698–2705, Sep. 2013, doi: 10.1007/s11665-013-0570-7.
  • [15] I. Morozova et al., “Precipitation phenomena in impulse friction stir welded 2024 aluminium alloy,” Mater. Sci. Eng. A, vol. 852, p. 143617, Sep. 2022, doi: 10.1016/j.msea.2022.143617.
  • [16] P. Manikandan et al., “Tensile and Fracture Properties of Aluminium Alloy AA2219-T87 Friction Stir Weld Joints for Aerospace Applications,” Metall. Mater. Trans. A, vol. 52, no. 9, pp. 3759–3776, Sep. 2021, doi: 10.1007/s11661-021-06337-y.
  • [17] J. Paszula, A. Maranda, B. Kukfisz, and P. Putko, “Investigation of the Explosive Characteristics of Ammonium Nitrate and Aluminium-Magnesium Alloy Powder Mixtures,” Energies, vol. 15, no. 23, p. 8803, Jan. 2022, doi: 10.3390/en15238803.
  • [18] Y. Yu, H. Ma, K. Zhao, Z. Shen, and Y. Cheng, “Study on Underwater Explosive Welding of Al-Steel Coaxial Pipes,” Cent. Eur. J. Energ. Mater., vol. 14, no. 1, p. 251–265, 2017, doi: 10.22211/cejem/68696.
  • [19] L.-L. Wang, “Unloading waves and unloading failures in structures under impact loading,” Int. J. Impact Eng., vol. 30, no. 8, pp. 889–900, Sep. 2004, doi: 10.1016/j.ijimpeng.2003.10.031.
  • [20] R. Kosturek, L. Śnieżek, J. Torzewski, T. Ślęzak, M. Wachowski, and I. Szachogłuchowicz, “Research on the Properties and Low Cycle Fatigue of Sc-Modified AA2519-T62 FSW Joint,” Materials, vol. 13, no. 22, p. 5226, Jan. 2020, doi: 10.3390/ma13225226.
  • [21] M. Najwer and P. Niesłony, “Ocena mikrotwardości oraz własności wytrzymałościowych trimetalu AA2519-AA1050-TI6AL4V po ró˙znych obróbkach cieplnych,” Przegląd Spawalnictwa, vol. 88, no. 4, p. 16–18, Apr. 2016, doi: 10.26628/ps.v88i4.589.
  • [22] C.E. Neu, “Properties of Shock Hardened 7050 Aluminum Alloy,” Naval Air Development Center Warminster Pa Aircraft And Crew Systems Technology Directorate, 1981.
  • [23] I. Konovalenko, P. Maruschak, J. Brezinová, and J. Brezina, “Morphological Characteristics of Dimples of Ductile Fracture of VT23M Titanium Alloy and Identification of Dimples on Fractograms of Different Scale,” Materials, vol. 12, no. 13, p. 2051, Jan. 2019, doi: 10.3390/ma12132051.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-70e650bb-1eae-440b-b3ec-deeac35f50cc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.