PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis of sulfated zirconia-HY zeolite catalysts doped by platinum metal for hydroisomerization reaction

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, active catalysts of platinum supported on sulfated zirconia and HY zeolite (Pt/SZ-HY), and platinum supported on sulfated zirconia – mHY zeolite (Pt/SZ-mHY) were prepared using two different mesopore HY zeolite and sulfated zirconia (SZ). The synthesized catalysts were characterized by X-ray diffraction (XRD), Fourier transfer infrared spectroscopy (FTIR), BET surface area and pore volume, field emission scanning electron microscopy (FESEM) and energy dispersive X-ray (EDX) analysis. The characterisation results showed that adding sulfated zirconia to HY zeolite as a composite increased the active sites on the catalyst and increased the activity of isomerization. Isomerization experiments were studied using a different range of temperature (140–200 °C), constant pressure and LHSV of 15 bar and 1 hr-1, respectively. The results showed Pt/SZ-HY composite catalyst gives 17.95 mol% conversions for n-hexane and 27.5 mol% for n-heptane at optimum conditions of 160 °C, 15 bar and LHSV of 1 hr-1. On the other hand, the composite catalyst Pt/SZ-mHY with smaller pore size achieved higher conversion to isomers, also proved that the conversion to isomer was more for n-heptane than n-hexane, which achieved 73.05 mol% conversion of n-heptane, while 57.91% for n-hexane at the optimum operation conditions.
Rocznik
Strony
147--158
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
  • Department of Chemical Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq
  • Department of Chemical Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq
  • Petroleum Research and Development Center, Ministry of Oil, Baghdad, Iraq
Bibliografia
  • 1. Ahmed A. N., Jarulah A. T., Altabakh B. A. A., Ahmed A. M., and Mohammed H. J. (2023), Preparation and characterization of metal carbide zeolite composite catalyst, J. Pet. Res. Stud., 13(4), 115–130. http://doi.org/10.52716/jprs.v13i4.737
  • 2. Ahmedzeki N. S. and Al-Tabbakh B. A. (2016), Catalytic reforming of iraqi naphtha over Pt-Ti /HY zeolite catalyst, Iraqi J. Chem. Pet. Eng., 17(3), 45–56, http://doi.org/10.31699/ijcpe.2016.3.4
  • 3. Alhassani, M. H., Al-Jubouri, S. M., Noori, W. O., Al-Jendeel, H. A. (2018), Esterification reaction kinetics using ion exchange resin catalyst by pseudohomogenous and Eley-Ridel models, International Journal of Engineering, Transactions B: Applications, 31(8), 1172–1179.
  • 4. Al-Hassany M., (2009), Effect of Zro2, Wo3 additives on catalytic performance of Pt/Hy zeolite compared with Pt/Γ-Al2O3 for Iraqi Naphtha transformation, J. Eng., 15(4), 4378–4392. https://doi.org/10.31026/j.eng.2009.04.19
  • 5. Aljandeel H. A. and Hussein H. Q., (2018), Kinetic study of hydroisomerization of n-Decane using Pt/SAPO-11 catalysts, Iraqi J. Chem. Pet. Eng., 19(3), 11–17, https://doi.org/10.31699/ijcpe.2018.3.2
  • 6. Al-jendeel H. A. and Hussein H. Q., (2021), Advanced study of promoted Pt / SAPO-11 catalyst for hydroisomerization of the n-Decane model and lube oil, Iraqi J. Chem. Pet. Eng., 2(2), 17–26, https://doi.org/10.31699/IJCPE.2021.2.3
  • 7. Al-Mhanna N. M., (2018), Simulation of high pressure separator used in crude oil processing, Processes, 6(11), https://doi.org/10.3390/pr6110219
  • 8. Al-Naib, S. A., Al-Jendeel, H. A. (2024). Hydroisomerization of n-hexane over Pt/TiO2 catalysts. Chem. Pap., 78, 9069–9076. https://doi.org/10.1007/s11696-024-03727-5
  • 9. Al-Tabbakh D. B. A. and Dawood M. M., (2022), Synthesis and characterization of sulfated zirconia catalyst for light naphtha isomerization process, J. Pet. Res. Stud., 12(1)(Suppl.), 186–198, https://doi.org/10.52716/jprs.v12i1(suppl.).630
  • 10. Ayad Z., Hussein H. Q., Al-tabbakh B. A., Z. Ayad, Hussein H. Q., and Al-tabbakh B. A. (2020), Synthesis and characterization of high silica HY zeolite by basicity reduction Synthesis and Characterization of High Silica HY Zeolite by Basicity Reduction, AIP Conf. Proc., 020168, https://doi.org/10.1063/5.0000278
  • 11. Chen Z. et al., (2018), Mechanism of byproducts formation in the isobutane/butene alkylation on HY zeolites, RSC Adv., 8(7), 3392–3398, 2018, https://doi.org/10.1039/c7ra12629h
  • 12. Cui Y., Dong X., Jiang Z., Suo Y., Zhang W., and Wang Y., (2024), RSC advances study on the preparation and n -heptane, RSC Adv., 14, 4105–4115, https://doi.org/10.1039/D3RA08454J
  • 13. El-Desouki D. S., Ibrahim A. H., Abdelazim S. M., Aboul-Gheit N. A. K., and Abdel-Hafizar D. R., (2021), The optimum conditions for methanol conversion to dimethyl ether over modified sulfated zirconia catalysts prepared by different methods, Ranliao Huaxue Xuebao/Journal Fuel Chem.Technol., 49(1), 63–71., https://doi.org/10.1016/S1872-5813(21)60009-9
  • 14. Fathy D. A. N. and Soliman M. A., (2019). A multi-response optimization for isomerization of light naphtha, Int. J. Innov. Technol. Explor. Eng., 8(11), 3921–3933, https://doi.org/10.35940/ijitee.K1774.0981119
  • 15. Ghaderi Z., Peyrovi M. H., and Parsafard N., (2023), Effects of Zr, Al, and mordenite on Pt-MCM-48 catalyst in n-heptane isomerization: preparation, characterization and catalytic performance,J. Porous Mater., 30(5), 1789–1795, https://doi.org/10.1007/s10934-023-01463-x
  • 16. Hamied R. S., Shakor Z. M., Sadeiq A. H., Razak A. A., and Khadim A. T. (2023). Kinetic modelling of light naphtha hydroisomerization in an Industrial Universal Oil Products Penex TM Unit. Energy, 120(6) http://doi.org/10.32604/ee.2023.028441
  • 17. Hammadi A. N. and Shakir I. K., (2019). Adsorption behavior of light naphtha components on Zeolite (5A) and activated carbon, Iraqi J. Chem. Pet. Eng., 20(4), 27–33, http://doi.org/10.31699/ijcpe.2019.4.5
  • 18. Hussain H. M. and Mohammed A. A. K., (2019). Experimental study of Iraqi Light Naphtha Isomerization over Ni-Pt/H-Mordenite, Iraqi J. Chem. Pet. Eng., 20(4), 61–66, https://doi.org/10.31699/ijcpe.2019.4.10
  • 19. Jarullah A. T., Ahmed A. M., Hussein H. M., Ahmed A. N., and Mohammed H. J. (2023). Evaluation of synthesized Pt/HY-H-mordenite composite catalyst for isomerization of light naphtha, Tikrit J. Eng. Sci., 30(1), 94–103. http://doi.org/10.25130/tjes.30.1.9
  • 20. Juanjuan Z., Yueqin S., Yifei Z., Xiaolong Z., Yaqing J., Longya X., (2010). Effect of crystallization of Hydrous Zirconia on the isomerization activity of Pt/WO3-ZrO2, Chinese Journal of Catalysis, 31(4), 374–376, https://doi.org/10.1016/S1872-2067(09)60054-1
  • 21. Kamel S. A. S., Mohammed W. T., and Aljendeel H., (2021). Synthesis and characterization of Ni-WO3/Sulfated Zirconia Nano catalyst for isomerization of N-Hexane and Iraqi Light Naphtha, Iraqi J. Chem. Pet. Eng., 22(4), 1–10, https://doi.org/10.31699/ijcpe.2021.4.1
  • 22. Khalaf Y. H., Al-Zaidi B. Y., and Shakour Z. M., (2022). Experimental and kinetic study of the effect of using Zr-and Pt-loaded Metals on Y-zeolitebased catalyst to improve the products of n-heptane hydroisomerization reactions. Orbital, 14(3), 153–167. http://doi.org/10.17807/orbital.v14i3.17429
  • 23. Khalaf Y. H., Sherhan B. Y., Shakor Z. M., and Al-Sheikh F., (2023). Bimetallic catalysts for isomerization of alkanes (A Review) Pet. Chem., 63(7), 829–843. http://doi.org/10.1134/S0965544123050079
  • 24. Khalaf Y., Sherhan B., and Shakour Z., (2022). Hydroisomerization of n-heptane in a fixed-bed reactor using a synthesized bimetallic Type-HY Zeolite Catalyst, Eng. Technol. J., 40(9), 1–13. https://doi.org/10.30684/etj.2022.132491.1124
  • 25. Kumar A., Priyanka, Mangalam J., Yadav V., and Goswami T., (2022). Synthesis of sulfated zirconia catalyst using sol–gel technique for alkane isomerization, React. Kinet. Mech. Catal., 135(4), 1929–1944, https://doi.org/10.1007/s11144-022-02254-2
  • 26. Lassoued H., Mota N., Ordóñez E. M. et al., (2023). Improved dimethyl ether production from syngas over aerogel Sulfated Zirconia and Cu-ZnO(Al) bifunctional composite catalysts, Materials, 16(23), https://doi.org/10.3390/ma16237328
  • 27. Liu N., Ma Z., Wang S.,Shi L., Hu X., and Meng X. M., (2019). Palladium-doped sulfated zirconia: Deactivation behavior in isomerization of n-hexane, Fuel, 262, 116566. http://doi.org/10.1016/j.fuel.2019.116566
  • 28. Ma Z., Meng X., Liu N., and Shi L., (2018). Pd-Ni doped sulfated zirconia: Study of hydrogen spillover and isomerization of N-hexane, Mol. Catal., 449, November 2017, 114–121. https://doi.org/10.1016/j.mcat.2018.02.003
  • 29. Mohammed A. H. A.K., Al-Hassani M., and Kareem S., (2008). The effect of TCE addition on the performance of catalytic isomerization of n-Hexane, Iraqi J. Chem. Pet. Eng., 9(4), 7–12, http://doi.org/10.31699/ijcpe.2008.4.2
  • 30. Mohammed A. H. A.K., Rahman A. M., and Al-Hassani M., (2009). Kinetic study of catalytic hexane isomerization. Iraqi J. Chem. Pet. Eng., 10(1), 17–22, http://doi.org/10.31699/ijcpe.2009.1.3
  • 31. Oloye F. F., Aliyev R., and Anderson J. A., (2018). Hydroisomerisation of n-heptane over Pt/sulfated zirconia catalyst at atmospheric pressure, Fuel, 222, 569–573, https://doi.org/10.1016/j.fuel.2018.02.175
  • 32. Pastvova J., Kaucky D., Moravkova J., et al., (2017). Effect of enhanced accessibility of acid sites in micromesoporous mordenite zeolites on hydroisomerization of n-Hexane, ACS Catal., 7(9), 5781–5795, https://doi.org/10.1021/acscatal.7b01696
  • 33. Patrylak L., Pertko O., Voloshyna Y., et al., (2021). Linear hexane isomerization over bimetallic zeolite catalysts,Chem. Chem. Technol., 15(3), 330–335. https://doi.org/10.23939/chcht15.03.330
  • 34. Voloshyna Y. G., Pertko O. P., Povazhnyi V. A., Patrylak L. K., and Yakovenko A. V., (2023). Influence of the development of a system of nanoscale pores in a mordenite-containing rock on its selectivity for di-branched products of n-hexane hydroisomerization, Appl. Nanosci., 13(7), 4863–4872. https://doi.org/10.1007/s13204-022-02632-1
  • 35. Liu Y., Yang S., Wang T., Xue K., Shi C., Pan L., Zhang X., Zou J.-J. (2024). Zeolite catalytic Simmons–Smith cyclopropanation of alkenes for the synthesis of high-energy-density fuels. Industrial & Engineering Chemistry Research, 63(16), 6985–6994. https://doi.org/10.1021/acs.iecr.4c00377
  • 36. Yang K., Li H., Zhao S., et al., (2018). Improvement of activity and stability of CuGa promoted sulfated zirconia catalyst for n-butane isomerization improvement of activity and stability of CuGa promoted sulfated zirconia catalyst for n -butane isomerization, https://doi.org/10.1021/acs.iecr.7b04590
  • 37. Zhu P., Meier S., Saravanamurugan S., and Riisager A., (2021). Modification of commercial Y zeolites by alkaline-treatment for improved performance in the isomerization of glucose to fructose, Mol. Catal., 510, June, 111686, https://doi.org/10.1016/j.mcat.2021.111686
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-70e52342-e515-47c1-ab80-8df232bfb6c6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.