PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Parameter optimization for wire-cut electrical discharge machining of stir cast AA6063 alloy/SiC (black and green) using Taguchi method with grey relational analysis

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present investigation aimed to determine the optimal parameters for wire-cut electrical discharge machining (WEDM) for stir cast aluminum alloy AA6063 at 850°C reinforced with 10 wt.% green SiC (SiCg) and black SiC (SiCb) particles. The WEDM machining parameters, such as pulse on time (TON), wire feed (WF) rate, and flushing pressure (FP) of the resultant stir cast AA6063/SiCb and AA6063/SiCg composites, were optimized using the Taguchi method with L9 orthogonal array to estimate the responses, such as surface roughness and metal removal rate. Further, through grey relational analysis, the finest parameters for WEDM of AA6063/SiCb and AA6063/SiCg composites were evaluated as TON = 50 μs, WF rate = 18 m/min, and FP = 3 MPa. With the optimum parameters obtained, conformational experiments were conducted, and the scanning electron microscopic images were recorded, along with the energy-dispersive X-ray (EDX) spectroscopic data of the worn surfaces and debris. From the EDX mapping images of the machined surface, it was evident that AA6063/SiCb displays a more polished surface than AA6063/SiCg. However, for applications requiring a high metal removal rate, AA6063/SiCg displays better results than AA6063/SiCb.
Wydawca
Rocznik
Strony
68--83
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
  • Department of Mechanical Engineering, Mepco Schlenk Engineering College, Sivakasi – 626005, Tamilnadu, India
  • Department of Mechanical Engineering, Jayamatha Engineering College, Muppandal, Aralvaimozhi – 629301, Tamilnadu,India
autor
  • Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, ChettinadAcademy of Research and Education, Kelambakkam – 603103, Tamilnadu, India
Bibliografia
  • [1] Kutz M. Mechanical engineers’ handbook, volume 4: energy and power. John Wiley & Sons; United States of America, 2015.
  • [2] Shi J, Wang Y. Development of metal matrix composites by laser-assisted additive manufacturing technologies: a review. J Mater Sci. 2020;55(23):9883–917. https://doi.org/10.1007/s10853-020-04730-3
  • [3] Choudhary R, Kumar A, Raj H, Kumar S, Tiwari S, Khan S, et al. Fabrication and characterization of stir cast Al2024/SiCp metal matrix composite. Mater Today Proc. 2020; https://doi.org/10.1016/j.matpr.2020.02.471
  • [4] Coyal A, Yuvaraj N, Butola R, Tyagi L. An experimental analysis of tensile, hardness and wear properties of aluminium metal matrix composite through stir casting process. SN Appl Sci. 2020;2:892. https://doi.org/10.1007/s42452-020-2657-8
  • [5] Adebisi A, Maleque M, Rahman MM. Metal matrix composite brake rotor: historical development and product life cycle analysis. Int J Automot Mech Eng. 2011;4(1):471–80.
  • [6] Bae W, Kim S, Kim Y, Lee S-K. Suppression of machine tool spindle vibration by using TiC-SKH51 metal matrix composite. Compos Res. 2020;33(5):262–7. https://doi.org/10.7234/composres.2020.33.5.262
  • [7] Bawa M, Umaru O, Abur B, Salako I, Jatau J. Effect of locust bean pod ash on the hardness and wear rate of heat treated A356 alloy metal matrix composite for production of automobile brake rotor. Eng Technol. 2020;57(1):36–43. https://doi.org/10.47119/IJRP100571720201325
  • [8] Mason CJT. Structure-property-process relations of solid-state additively manufactured aerospace aluminum alloys. University of Alabama Libraries; United States of America, 2020.
  • [9] Mallick PK. Materials, design and manufacturing for lightweight vehicles. Woodhead Publishing; United Kingdom, 2020.
  • [10] Hikku G, Jeyasubramanian K, Venugopal A, Ghosh R. Corrosion resistance behaviour of graphene/polyvinyl alcohol nanocomposite coating for aluminium-2219 alloy. J Alloys Compd. 2017;716:259–69. https://doi.org/10.1016/j.jallcom.2017.04.324
  • [11] Nino A, Takahashi N, Sugiyama S, Taimatsu H. Effects of carbide grain growth inhibitors on the microstructures and mechanical properties of WC–SiC–Mo2C hard ceramics. Int J Refract Met Hard Mater. 2014;43:150–6. https://doi.org/10.1016/j.ijrmhm.2013.11.016
  • [12] Loto RT, Babalola P. Corrosion resistance of low SiC particle variation at low weight content on 1060 aluminum matrix composite in sulfate-contaminated sea-water. Results Phys. 2019;13:102241. https://doi.org/10.1016/j.rinp.2019.102241
  • [13] Hu Q, Zhao H, Li F. Microstructures and properties of SiC particles reinforced aluminum-matrix composites fabricated by vacuum-assisted high pressure die casting. Mater Sci Eng A. 2017;680:270–7. https://doi.org/10.1016/j.msea.2016.10.090
  • [14] Mousavian RT, Khosroshahi RA, Yazdani S, Brabazon D, Boostani A. Fabrication of aluminum matrix composites reinforced with nano-to micrometer-sized SiC particles. Mater Des. 2016;89:58–70. https://doi.org/10.1016/j.matdes.2015.09.130
  • [15] Fenghong C, Chang C, Zhenyu W, Muthuramalingam T, Anbuchezhiyan G. Effects of silicon carbide and tungsten carbide in aluminium metal matrix composites. Silicon. 2019;11(6):2625–32. https://doi.org/10.1007/s12633-018-0051-6
  • [16] Ortega-Celaya F, Pech-Canul M, López-Cuevas J, Rendón-Ángeles J, Pech-Canul M. Microstructure and impact behavior of Al/SiCp composites fabricated by pressureless infiltration with different types of SiCp. J Mater Process Technol. 2007;183(2–3):368–73. https://doi.org/10.1016/j.jmatprotec.2006.10.029
  • [17] Rojas JI, Siva BV, Sahoo KL, Crespo D. Viscoelastic behavior of a novel aluminum metal matrix composite and comparison with pure aluminum, aluminum alloys, and a composite made of Al–Mg–Si alloy reinforced with SiC particles. J Alloys Compd. 2018;744:445–52. https://doi.org/10.1016/j.jallcom.2018.02.103
  • [18] Dongre G, Zaware S, Dabade U, Joshi SS. Multi-objective optimization for silicon wafer slicing using wire-EDM process. Mater Sci Semicond Process. 2015;39:793–806. https://doi.org/10.1016/j.mssp.2015.06.050
  • [19] Vijayabhaskar S, Rajmohan T, Pranay Sisir T, Phani Abishek J, Mohankrishna Reddy R, editors. Review of WEDM studies on metal matrix composites. IOP Conference Series Materials Science Engineering, The 3rd International Conference on Materials and Manufacturing Engineering 2018 8–9 March 2018, Tamilnadu, India; 2018. https://doi.org/10.1088/1757-899X/390/1/012051
  • [20] Bilal A, Jahan MP, Talamona D, Perveen A. Electro-discharge machining of ceramics: a review. Micromachines. 2019;10(1):10. https://doi.org/10.3390/mi10010010
  • [21] Shandilya P, Jain P, Jain N. Wire electric discharge machining of metal matrix composite materials. DAAAM Int Sci Book. 2011:383–401.
  • [22] Nguyen PH, Banh TL, Mashood KA, Tran DQ, Muthuramalingam T, Nguyen DT. Application of TGRA-based optimisation for machinability of high-chromium tool steel in the EDM process. Arab J Sci Eng. 2020;45(7):5555–62. https://doi.org/10.1007/s13369-020-04456-z
  • [23] Selvakumar G, Sornalatha G, Sarkar S, Mitra S. Experimental investigation and multi-objective optimization of wire electrical discharge machining (WEDM) of 5083 aluminum alloy. Trans Nonferrous Met Soc China. 2014;24(2):373–9. https://doi.org/10.1016/S1003-6326(14)63071-5
  • [24] Mandal K, Sarkar S, Mitra S, Bose D. Parametric analysis and GRA approach in WEDM of Al 7075 alloy. Mater Today Proc. 2020;26:660–4. https://doi.org/10.1016/j.matpr.2019.12.361
  • [25] Ramu I, Srinivas P, Vekatesh K, editors. Taguchi based grey relational analysis for optimization of machining parameters of CNC turning steel 316. International Conference on Mechanical, Materials and Renewable Energy; 2018. https://doi.org/10.1088/1757-899X/377/1/012078
  • [26] Sarraf F, Nejad SH. Improving performance evaluation based on balanced scorecard with grey relational analysis and data envelopment analysis approaches: case study in water and wastewater companies. Eval Program Plann. 2020;79:101762. https://doi.org/10.1016/j.evalprogplan.2019.101762
  • [27] Yue G, Lu X, Zhu Y, Zhang X, Zhang S. Surface morphology, crystal structure and orientation of aluminium coatings electrodeposited on mild steel in ionic liquid. Chem Eng J. 2009;147(1):79–86. https://doi.org/10.1016/j.cej.2008.11.044
  • [28] Pramanik D, Kuar A, Bose D. Effects of wire EDM machining variables on material removal rate and surface roughness of Al 6061 alloy. Renew Energ Innov Technol 2019231–41. https://doi.org/10.1007/978-981-13-2116-0_19
  • [29] Kapoor J, Khamba JS, Singh S. The effect of machining parameters on surface roughness and material removal rate with cryogenic treated wire in WEDM. Int J Mach Mach Mater. 2012;12(1–2):126–41. https://doi.org/10.1016/j.matdes.2010.01.013
  • [30] Azam M, Jahanzaib M, Abbasi JA, Abbas M, Wasim A, Hussain S. Parametric analysis of recast layer formation in wire-cut EDM of HSLA steel. Int J Adv Manuf Technol. 2016;87(1):713–22. https://doi.org/10.1007/s00170-016-8518-3
  • [31] Tanjilul M, Ahmed A, Kumar AS, Rahman M. A study on EDM debris particle size and flushing mechanism for efficient debris removal in EDM-drilling of Inconel 718. J Mater Process Technol. 2018;255:263–74. https://doi.org/10.1016/j.jmatprotec.2017.12.016
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-70e082f4-5361-4ba9-82e1-f97f64ab0e68
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.