PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of the Quality of Metal Sheet Edges After Strip Slitting Processes in Integrated Lines on the Quality of Laser Welds

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper concerns issues related to the processes of sheet metal slitting and laser welding in technological lines. It includes a discussion of the industry needs and requirements for semi-finished products in the form of thin metal sheets. Furthermore, the basic technical solutions used in automatic strip slitting equipment and selected process parameters based on a specific material are described. The presented results were obtained on the basis of practical verification of the assumptions using newly designed devices implemented into production. The research material consisted of samples taken from S235JR sheet after strip slitting on an integrated slitting line and samples taken from a finished sideboard profile after laser welding. The welding process had been carried out using a CO2 laser, TruLaser Cell 1100, with a power of 4kW. Areas of a laser-welded joint were analysed for varied condition of the sheet edges at the production speed of 4m/min. Microscopic weld examination for the sheet edges without strains or burrs revealed a deep penetration at the level of 2355 µm, allowing to obtain a joint with a length of 1607 µm, a small heat-affected zone, and the correct structure. The paper shows possible problems and causes of their occurrence in industrial conditions.
Twórcy
  • Department of Railway Transport, Faculty of Transport and Aviation Engineering, Silesian University of Technology, ul. Krasińskiego 8, 40-019 Katowice, Poland
Bibliografia
  • 1. Grajcar A. Modern high-strength steels for the 3rd generation automotive industry. Stal, Metale & Nowe Technologie 2014; 3–4: 52–56.
  • 2. Dzięgielewski A., Kowalski A., Kowalski M., Zakrzewski T. Usage of the coldformed profiles in contemporary buildings construction. Inżynieria i Budownictwo 2017; 73(4): 180–183.
  • 3. Tisza M., Czinege I. Comparative study of the application of steels and aluminium in lightweight production of automotive parts. International Journal of Lightweight Materials and Manufacture 2018; 1: 229–238.
  • 4. Marchwiński J. Steel in architecture. Builder 2019; 258: 33–36.
  • 5. Piec M., Dobrzański L.A., Labisz K., Jonda E., Klimpel A. Laser alloying with WC Ceramic Powder in hot work tool steel using a High Power Diode Laser (HPDL). Advanced Materials Research 2007; 15–17: 193–198.
  • 6. Labisz K., Konieczny J., Jurczyk S., Tański T., Krupiński M. Thermo-derivative analysis of Al–Si–Cu alloy used for surface treatment, J Therm Anal Calorim 2017; on-line open access: 1–9.
  • 7. Garbarz B., Marcisz J., Żółkiewski K., Lubowiecki P., Nowak B., Smoleń M., Skurczyński M. Industrial technology of manufacturing ultra-strength nanobainitic steel plates. Journal of Metallic Materials 2020; 72(2): 2–22.
  • 8. Yanagimoto J., Oya T., Kawanishi S., Tiesler N., Koseki T. Enhancement of bending formability of brittle sheet metal in multilayer metallic sheets. CIRP Annals – Manufacturing Technology 2010; 59: 287–290.
  • 9. Bajerlein M., Czerwiński J., Merkisz J., Daszkiewicz P., Rymaniak Ł. High temperature alloy steel used in railway vehicles. TTS Technika Transportu Szynowego 2017; 12: 228–232.
  • 10. Slitting lines producer: https://www.georg.com/en/products/slitting-lines/
  • 11. Slitting lines producer: http://inmet.com.pl/
  • 12. Slitting lines producer: https://camu.it/pl/slitting-lines/
  • 13. Slitting lines producer: https://www.bradburygroup.com/products/coil-processing-equipment/slitting-lines
  • 14. Basak S., Kima C., Jeong W., Jung Y.I., Lee M.-G. Numerical prediction of sheared edge profiles in sheet metal trimming using ductile fracture modeling. International Journal of Mechanical Sciences 2022; 219: 1–21.
  • 15. Mori K.I. Review of Shearing Processes of High Strength Steel Sheets. Journal of Manufacturing and Materials Processing 2020; 4(2)54: 1–14.
  • 16. Bohdal Ł., Kukiełka L., Legutko S., Patyk R., Radchenko A.M. Modeling and Experimental Analysis of Shear-Slitting of AA6111-T4 Aluminum Alloy Sheet. Materials 2020; 13(3175): 1–21.
  • 17. Mróz S. Examination of the effect of slitting roller shape on band slitting duringthe multi slit rolling process. Journal of Achievements in Materials and Manufacturing Engineering 2008; 26(2): 167–170.
  • 18. EN 10130:2009 – Cold rolled low carbon steel flat products for cold forming. Technical delivery conditions.
  • 19. EN 101301:2008 – Cold rolled uncoated and zinc or zinc-nickel electrolytically coated low carbon and high yield strength steel flat products for cold forming – Tolerances on dimensions and shape.
  • 20. Hego Maschinen & Ausrüstung GmbH. Technical catalog: Blechwickel – und schneidesysteme.
  • 21. DeeTee Industries Limited. Technical catalog: Slitting knife clearance.
  • 22. Iron Srl. Technical catalog: Slitting lines.
  • 23. Bolt P.J., Sillekens W.H. Prediction of shape aberrations due to punching, shearing and slitting. Journal of Materials Processing Technology 2000; 103: 87–94.
  • 24. Ma J., Lu H., Li M., Wang B. Burr height in shear slitting of aluminum webs. Journal of Manufacturing Science and Engineering 2006; 128(1): 46–55.
  • 25. Technical and implementation documentation. Inmet Company No. SI-001.
  • 26. Danielewski H., Skrzypczyk A. Steel Sheets Laser Lap Joint Welding-Process Analysis. Materials 2020; 13(2258): 1–18.
  • 27. Evin E., Tomáš M. The Influence of Laser Welding on the Mechanical Properties of Dual Phase and Trip Steels. Metals 2017; 7(239): 1–16.
  • 28. Zdravecká E., Slota J. Mechanical and Microstructural Investigations of the Laser Welding of Different Zinc-Coated Steels. Metals 2019; 9(91): 1–13.
  • 29. Misiura K., Konieczny J., Labisz K., Boris R. Investigations of the structure and hardness of dissimilar steel-to-aluminum joints made using laser welding technology. Transport Problems 2022; 17(1): 73–86.
  • 30. Hong K.M., Shin Y.C. Prospects of laser welding technology in the automotive industry: A review. Journal of Materials Processing Technology 2017; 245: 46–69.
  • 31. Fernandes F.A.O., Oliveira D.F., Pereira A.B. Optimal parameters for laser welding of advanced high-strength steels used in the automotive industry. Procedia Manufacturing 2017; 13: 219–226.
  • 32. Producer of side boards for agriculture: https://pronar.pl/
  • 33. Chen L., Ma X., Ma Z., Lu D., Hou B. Study on microstructure and corrosion resistance of high-hardness Zn-1.0 Cu-1.0 Ti alloy. Materials Characterization 2021; 178(111283): 1–16.
  • 34. Cia G., Puglisi V., Celani A. New construction materials and technologies for contemporary building envelopes. 41st IAHS World Congress. Sustainability and Innovation for the Future 2016; 31–40.
  • 35. Stańczyk M., Figlus T. A method for the selection of certain force and energy parameters of automatic sheet metal coiling machines. Metalurgija 2016; 55(1): 79–82.
  • 36. Technical documentation Inmet Company, http://inmet.com.pl/
  • 37. Technical documentation Matio Company, http://matio.pl/
  • 38. Technique of sheet metal cutting: https://dienes.com.pl/
  • 39. EN 10025–2:2019–11 – Hot rolled products of structural steels. Part 2: Technical delivery conditions for non-alloy structural steels.
  • 40. EN ISO 17639:2022–07 – Destructive testing of welded metal joints – Macroscopic and microscopic testing of welded joints.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-70df763b-77ad-4ba5-88ce-2c9f097c9ff9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.