PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Efficiency of Filtering Materials Used in Respiratory Protective Devices Against Nanoparticles

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The basic aim of this research was to establish the efficiency of filtering materials widely used in respiratory protection devices with particular interest in their porosity, degree of electric and changeable process parameters, such as the flow rate of the test nanoaerosol and the size range of nanoparticles. Tests were carried out with an NaCl solid aerosol of 3.2 × 105 particles/cm3 for the range of particle size of 7–270 nm, at aerosol flow rate of 1800, 2700, 3600, 4500 and 5400 L/h. The tests showed that electrospun nonwovens were the most effective filtering materials for nanoparticles over 20 nm. Melt-blown electret nonwovens with lower porosity than electrospun nonwovens had higher values of penetration of 1%–4%. Those materials provided very efficient protection against nanoparticles of certain sizes only.
Rocznik
Strony
285--295
Opis fizyczny
Bibliogr. 16 poz., rys., tab., wykr.
Twórcy
autor
  • Central Institute for Labour Protection - National Research Institute (CIOP-PIB), Łódź, Poland
autor
  • Central Institute for Labour Protection - National Research Institute (CIOP-PIB), Łódź, Poland
  • Central Institute for Labour Protection - National Research Institute (CIOP-PIB), Łódź, Poland
  • Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warsaw, Poland
Bibliografia
  • 1.Grass RN, Limbach LK, Athanassiou EK, Stark WJ. Exposure of aerosols and nanoparticle dispersions to in vitro cell cultures: a review on the dose relevance of size, mass, surface and concentration. J Aerosol Sci. 2010;41(12):1123-42.
  • 2.Sinha N, Ma J, Yeow JT. Carbon nanotube-based sensors. J Nanosci Nanotechnol. 2006;6(3):573-90.
  • 3.Mao S, Lu G, Chen J. Carbon-nanotube-assisted transmission electron microscopy characterization of aerosol nanoparticles. Aerosol Science. 2009;40(2):180-4.
  • 4.Park J, Kwak BK, Bae E, Lee J, Kim Y, Choi K, et al. Characterization of exposure to silver nanoparticles in a manufacturing facility. J Nanopart Res. 2009;11(7):1705-12.
  • 5.Boddu SR, Gutti VR, Ghosh TK, Tompson RV, Loyalka SK. Gold, silver and palladium nanoparticle/nano-agglomerate generation, collection, and characterization. J Nanopart Res. 2011;13(12):6591-601.
  • 6.Reijnders L. The release of TiO2 and SiO2 nanoparticles from nanocomposites. Polym Degrad Stab. 2009;94(5):873-6.
  • 7.Warheit DB, Sayes CM, Reed KL, Swain KA. Health effects related to nanoparticle exposures: environmental, health and safety considerations for assessing hazards and risks. Pharmacol Ther. 2008;120(1):35-42.
  • 8.Friedrichs S, Schulte J. Environmental, health and safety aspects of nanotechnology implications for the R&D in (small) companies. Science and Technology of Advanced Materials. 2007;8(1-2):12-8.
  • 9.Kandlikar M, Ramachandran G, Maynard A, Murdock B, Toscano WA. Health risk assessment for nanoparticles: a case for using expert judgment. Nanotechnology and Occupational Health. 2007;9:137-56.
  • 10.Council Directive 89/686/EEC of 21 December 1989 on the approximation of the laws of the Member States relating to personal protective equipment. OJ. 1989;L399:18-38. Retrieved April 2, 2013, from: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:1989L0686:20031120:en:PDF.
  • 11.Shaw DT. Fundamentals of aerosol science. New York, NY, USA: Wiley; 1978.
  • 12.Brochocka A, Ruszkowski K. Some aspects of manufacturing electret nonwoven filters by a conventional method with utilisation of the triboelectric effect. Fibres and Textiles in Eastern Europe. 2000;(3):69-72.
  • 13.Brochocka A. Characteristics of melt-blown filter materials produced by simultaneous blowing of polymer melt from two extruders. Fibres and Textiles in Eastern Europe. 2001;(4):66-9.
  • 14.Przekop R, Gradoń L. Deposition and filtration of nanoparticles in the composites of nano- and microsized fibres. Aerosol Sci Technol. 2008;42(6):483-93.
  • 15.Gradoń L, Podgórski A, Bałazy A. Filtration of nanoparticles in the nanofibrous filters. In: FILTECH EUROPA 2005. Conference Proceedings. 2005. Vol. II, p. 178-85.
  • 16.Podgórski A, Bałazy A, Gradoń L. Application of nanofibers to improve the filtration efficiency of the most penetrating aerosol particles in fibrous filters. Chem Eng Sci. 61(12):6804-15.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-70dccbbd-4103-4251-aff4-47a539c87d48
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.