PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal stability of the krypton Hall effect thruster

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Krypton Large IMpulse Thruster (KLIMT) ESA/PECS project, which has been implemented in the Institute of Plasma Physics and Laser Microfusion (IPPLM) and now is approaching its final phase, was aimed at incremental development of a ~500 W class Hall effect thruster (HET). Xenon, predominantly used as a propellant in the state-of-the-art HETs, is extremely expensive. Krypton has been considered as a cheaper alternative since more than fifteen years; however, to the best knowledge of the authors, there has not been a HET model especially designed for this noble gas. To address this issue, KLIMT has been geared towards operation primarily with krypton. During the project, three subsequent prototype versions of the thruster were designed, manufactured and tested, aimed at gradual improvement of each next exemplar. In the current paper, the heat loads in new engine have been discussed. It has been shown that thermal equilibrium of the thruster is gained within the safety limits of the materials used. Extensive testing with both gases was performed to compare KLIMT’s thermal behaviour when supplied with krypton and xenon propellants.
Czasopismo
Rocznik
Strony
9--15
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
autor
  • Institute of Plasma Physics and Laser Microfusion, 23 Hery Str., 01-497 Warsaw, Poland
autor
  • Institute of Plasma Physics and Laser Microfusion, 23 Hery Str., 01-497 Warsaw, Poland
autor
  • Université d’Orléans, France
Bibliografia
  • 1. Morozov, A. I., & Savelyev, V. V. (2000). Fundamentals of stationary plasma thruster theory. Rev. Plasma Phys., 21, 203–391.
  • 2. Kim, V., Popov, G., Arkhipov, B., Murashko, V., Gorshkov, O., Koroteyev, A., Garkusha, V., Semenkin, A., & Tverdokhlebov, S. (2001). Electric propulsion activity in Russia. In Proceedings of the 27th International Electric Propulsion Conference, Pasadena, CA, USA (paper 05).
  • 3. European Space Agency. (2009, August 1). SMART-1 overview. Retrieved from www.esa.int/Our_Activities/Space_Science/SMART-12.
  • 4. Zhurin, V. V., Kaufman, H. R., & Robinson, R. S. (1999). Physics of closed drift thrusters. Plasma Sources Sci. Technol., 8, R1–R20.
  • 5. Goebel, D. M., & Katz, I. (2008). Fundamentals of electric propulsion: Ion and Hall Thrusters. Hoboken, New Jersey: Wiley.
  • 6. Ahedo, E., & Gallardo, J. M. (2003). Scaling down Hall thrusters. In Proceedings of the 28th International Electric Propulsion Conference, Toulouse, France (paper 104).
  • 7. Dannenmayer, K., & Mazouffre, S. (2011). Elementary scaling relations for Hall Effect Thrusters. J. Propul. Power, 27, 236–245.
  • 8. Shagayda, A. A. (2013). On scaling of Hall Effect Thrusters. In Proceedings of the 33rd International Electric Propulsion Conference, Washington, D.C., USA (paper 56).
  • 9. Kurzyna, J., & Daniłko, D. (2011). IPPLM Hall Effect Thruster – design guidelines and preliminary tests. In Proceedings of the 32nd International Electric Propulsion Conference, Wiesbaden, Germany (paper 221).
  • 10. Kurzyna, J., Barral, S., Daniłko, D., Miedzik, J., Bulit, A., & Dannenmayer, K. (2014). First tests of the KLIMT Thruster with Xenon propellant at the ESA Propulsion Laboratory, Space Propulsion Conference, Cologne, Germany.
  • 11. Makela, J. M., Washeleski, R. L., Massey, D. R., King, L. B., & Hopkins M. A. (2009). Development of a magnesium and zinc Hall-Effect Thruster. In Proceedings of the 31st International Electric Propulsion Conference, Ann Arbor, Michigan, USA (paper 107).
  • 12. Scharfe, D. B. (2009). Alternative Hall thruster propellants krypton and bismuth: Simulated performance and characterization. Ph.D. thesis, Stanford University.
  • 13. Nakles, M. R., William Jr., A. H., Delgado, J. J., & Corey R. L. (2011). A performance comparison of xenon and krypton propellant on an SPT-100 Hall Thruster. In Proceedings of the 32nd International Electric Propulsion Conference, Wiesbaden, Germany (paper 003).
  • 14. Kim, V., Popov, G., Kozlov, V., Skrylnikov, A., & Grdlichko, D. (2001). Investigation of SPT performance and particularities of its operation with Kr and Kr/Xe mixtures. In Proceedings of the 27th International Electric Propulsion Conference, Pasadena, CA, USA (paper 065).
  • 15. Linnell, J. A., & Gallimore, A. D. (2005). Efficiency analysis of a Hall Thruster operating with krypton and xenon. In Proceedings of the 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibition, Tucson, Arizona, USA (paper 3683).
  • 16. CORDIS. (2013). Final report to FP7 European project HiPER (High Power Electric propulsion: A roadmap for the future). Contract no. 218859. EC Community Research and Development Information Service.
  • 17. Kurzyna, J. (2014). Numerical investigation of the Krypton Large IMpulse Thruster. Phys. Scripta, T161, 014051(4 pp.).
  • 18. Kurzyna, J., Szelecka, A., Daniłko, D., Barral, S., Dannenmayer, K., Bosch Borras, E., & Schönherr, T. (2016). Testing KLIMT prototypes at IPPLM and ESA Propulsion Laboratories. In Proceedings of Space Propulsion, Rome, Italy.
  • 19. Meeker, D. C. (2010). Finite element method magnetics. Version 4.2 Nov. Build, http://www.femm.info.
  • 20. Barral, S., & Brayer, C. (1997). CRATHER: un code de Conduction-RAdiation THERmique. National Center for Scientific Research, France.
  • 21. Çengel, Y. A. (2002). Heat transfer – a practical approach (2nd ed.). Boston: McGraw Hill.
  • 22. Włodarski, Z. (2006). Analytical description of magnetization curves. Phys. B-Condens. Matter, 373, 323–327.
  • 23. Włodarski, Z., & Włodarska, J. (1998). Analytical approximation of the dependence of magnetic material properties on temperature. COMPEL, 402–406.
  • 24. Ceramawire. (2011). Ceramawire High Temperature Magnet Wire Technical Specs. http://www.ceramawire.com/technical-information.shtml#2.
  • 25. Longmier, B. W., Reid, B. M., Gallimore, A. D., Chang-Díaz, F. R., Squire, J. P., Glover, T. W., Chavers, G., & Bering III, E. A. (2009). Validating a plasma momentum flux sensor to an inverted pendulum thrust stand. J. Propul. Power, 25, 746–752.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-70d8a6be-c3fa-4771-8b29-84a66f2e2434
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.