Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Aluminium recycling is one of currently growing industries in Indonesia. Abundant amounts of aluminium waste leads to the emergence of new industries. The waste produced from this kind of industry is not well processed yet. Bioremediation using isolated indigenous bacteria is one of the best options from treating the aluminium recycling wastewater. Since biological processes are closely related to the bacterial growth conditions, it is important to understand the effect of pH and aluminium exposure to bacteria. Six potential bacteria strains were obtained from isolation. Vibrio alginolyticus and Brochothrix thermosphacta were shown to be resistant to the aluminium exposure, as well as the acidic conditions. Both types of bacteria were able to survive on acid medium with pH 5. The higher the concentration of aluminium, the slower bacterial growth rate achieved. The MIC value of aluminium for Vibrio alginolyticus was 425 mg/l, Brochothrix thermosphacta was 325 mg/l and Pseudomonas aeruginosa was 200 mg/l.
Czasopismo
Rocznik
Tom
Strony
154--161
Opis fizyczny
Bibliogr. 23 poz., tab., rys.
Twórcy
autor
- Department of Environmental Engineering, Faculty of Civil, Environmental and Geo-Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya 60111, Indonesia
autor
- Department of Environmental Engineering, Faculty of Civil, Environmental and Geo-Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya 60111, Indonesia
autor
- Department of Environmental Engineering, Faculty of Civil, Environmental and Geo-Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya 60111, Indonesia
Bibliografia
- 1. Badan Lingkungan Hidup Kota Jombang 2016. Laporan analisis resiko lingkungan–lingkungan industri kecil daur ulang slag aluminium. Jombang, Jawa Timur.
- 2. Ciric L., Philp J.C. and Whiteley A.S. 2010. Hydrocarbon utilization within a diesel degrading bacterial consortium. FEMS Microbiol, 303(1), 116–122.
- 3. Deepali 2011. Bioremediation of chromium (VI) from textile industry`s effluent and contaminated soil using Pseudomonas putida. Journal of Energy & Environment, 2(1), 24–31.
- 4. Farid A.F. and Larsen J.L. 1981. Growth of Vibrio alginolyticus: interacting effects on pH, temperature, salt concentration, and incubation time. Zentralblatt für Bakteriologie Mikrobiologie und Hygiene: I. Abt. Originale C: Allgemeine, angewandte und ökologische Mikrobiologie, 2(1), 68–75.
- 5. Haytham I.M.M.. 2016. Biodegradation of used engine oil by novel strains of Orchrobactrum anthropic HM-1 and Citrobacter freundii HM-2 isolated from oil contaminated soil. Journal of Biotech, 3(226), 1–13.
- 6. Hoiby N., Ciofu O. and Bjarnsholt T. 2010. Pseudomonas aeruginosa biofilms in cystic fibrosis. Journal of Future Microbiology, 5(11), 1663–1674.
- 7. Khatun M., Bera P., Mitra D., Mandal A. and Amalesh S. 2012. Estimation of heavy metal tolerance and antibiotic susceptibility of Bacillus cereus isolated from municipal solid waste. International Journal of Pharma and Bio Sciences, 3(4), 819–829.
- 8. Kilcher S., Loessner M.J. and Klumpp J. 2010. Brochothrix thermosphacta bacteriophages feature heterogeneous and highly mosaic genomes and utilize unique prophage insertion sites. Journal of Bacteriol, 192(20), 5441–5453.
- 9. Klein S., Lorenzo C., Hoffmann S., Walther J.M., Storbeck S., Piekarski T., Tindall B.J., Wray V., Nimtz M. and Moser J. 2009. Adaptation of Pseudomonas aeruginosa to various conditions includes tRNA-dependent formation of alanyl-phosphatidylglycerol. Journal of Molecular Microbiology, 71(3), 551–565.
- 10. Konishi S., Souta I., Takahashi J., Ohmoto M. and Kaneko S. 1994. Isolation and characteristics of acid-and aluminum-tolerant bacterium. Bioscience, Biotechnology, and Biochemistry, 58(11), 1960–1963.
- 11. Leroi F, Fall PA, Pilet MF, Chevalier F, and Baron R. 2012. Influence of temperature, pH and NaCl concentration on the maximal growth Rate of Brochothrix thermosphacta and a bioprotective bacteria Lactococcus piscium CNCM I-4031. Food Microbiol, 31(2), 222–228.
- 12. Maier R.M. 2008. Chapter 3 Bacterial Growth. Elseveir, USA.
- 13. Mats I. 2012. We want aluminum, no excuses: Business-Government Relations in the American Aluminum Industry, 1917–1957. Tapir Academic Publishing, Oslo, Norway.
- 14. Mythili K. and Karthikeyan B. 2011. Bioremediation of Cr (VI) from tannery effluent using Bacillus spp and Staphylococcus spp. International Multidisciplinary Research Journal, 1(6), 38–41.
- 15. Nath S., Deb B. and Sharma I. 2012. Isolation and characterization of cadmium and lead resistant bacteria. Global Advanced Research Journal of Microbiology, 1(11), 194–198.
- 16. Ngo Thi Tuong C., Thien L.V. and Kanazawa S. 2014. Identification and characterization of acidity-tolerant and aluminium-resistant bacterium from tea soil. African Journal of Biotechnology, 13(27), 2715–2726.
- 17. Noguchi T., Hwang D F., Arakawa O., Sugita H., Deguchi Y., Shida Y., and Hashimoto K. 1987. Vibrio alginolyticus, a tetrodotoxin-producing bacterium. In: The Intestines of the Fish Fugu Vermicularis. Marine Biology, 94(4), 625–630.
- 18. Pina R.G. and Cervantes C. 1996. Microbial interaction with aluminium. Journal of Biometals, 9(3), 311–316.
- 19. Purwanti I.F., Kurniawan S.B. and Putri T.P. 2017. Bioremediation of chromium contaminated soil using bacteria. International Journal of Applied Engineering Research, 12(20), 9346–9350.
- 20. Purwanti I.F., Abdullah S.R.S., Hamzah A., Idris M., Basri H., Mukhlisin M. and Latif M.T. 2015. Biodegradation of diesel by bacteria isolated from Scirpus mucronatus rhizosphere in diesel-contaminated sand. Journal of Advanced Science, (2)1, 140–143.
- 21. Ruangpan L. 2004. Chapter 3. Minimum inhibitory concentration (MIC) test and determination of antimicrobial resistant bacteria. Laboratory Manual of Standardized Method for Antimicrobial Sensitivity Test for Bacteria Isolated from Aquatic Animals and Environment (31–55). Tigbauan, Iloilo, Philippines.
- 22. Tsakiridis P.E. 2012. Aluminium salt slag characterization and utilization – a review. Journal of Hazardous Materials, 2(1), 1–10.
- 23. Tuzen M. and Soylak M. 2008. Biosorption of aluminum on Pseudomonas aeruginosa loaded on chromosorb 106 prior to its graphite furnace atomic absorption spectrometric determination. Journal of Hazardous Materials 154(1–3), 519–25.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-70cf0bb0-de1e-4642-9c72-33d4f65fadc5