Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The natural frequencies and mode shapes of fibre metal laminates (FMLs) were numerically investigated and validated using commercially available finite element analysis software (ANSYS). Various grades of GLARE and FML were considered for free vibration analysis, and the effect of the central metal layer and aspect ratios on the frequencies were analysed for simply supported, clamped edge conditions. The obtained fundamental frequencies, natural frequencies and mode shapes comply with the available literature. The effect of the outermost metal layer on the natural frequencies was also investigated for various combinations of edge conditions. The obtained results indicate that there is a significant effect of the central and outermost metal layer on the natural frequencies, irrespective of the edge conditions and aspect (width/length) ratios.
Czasopismo
Rocznik
Tom
Strony
97--103
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
- Department of Mechanical Engineering, Vignan’s Foundation for Science Technology and Research (Deemed to be university), Guntur, India
autor
- Department of Mechanical Engineering, Vignan’s Foundation for Science Technology and Research (Deemed to be university), Guntur, India
autor
- Department of Mechanical Engineering, Vignan’s Foundation for Science Technology and Research (Deemed to be university), Guntur, India
autor
- Department of Applied Engineering, Vignan’s Foundation for Science Technology and Research (Deemed to be university), Guntur, India
Bibliografia
- [1] Cocchieri E., Almeida R., José S., Paulo S., A Review on the development and properties of continuous fiber/epoxy/aluminium hybrid composites for aircraft structures, Mater. Res. 2006, 9(3), 247-256.
- [2] Rao N.N., Rao P.M.V., Kumar S., A numerical approach to estimate first ply failure of fibre metal laminate. Revue des Composites et des Matériaux Avancés – Journal of Composite and Advanced Materials 2021, 31(1), 33-39, DOI: 10.18280/rcma.310105.
- [3] Morinière F.D., Alderliesten R.C., Benedictus R., Modelling of impact damage and dynamics in fibre-metal laminates – A review, Int. J. Impact Eng. 2014, 67, 27-38, DOI: 10.1016/j.ijimpeng.2014.01.004.
- [4] Krishnakumar S., Fiber metal laminates – the synthesis of metals and composites, Material and Manufacturing Process 1994, 9(2), 295-354, DOI: 10.1080/10426919408934905.
- [5] Vogelesang L.B., Vlot A., Development of fibre metal aminates for advanced aerospace structures, J. Mater. Process. Technol. 2000, 103(1), 1-5, DOI: 10.1016/S0924-0136(00)00411-8.
- [6] Asundi A., Choi A.Y.N. Materials processing technology fiber metal laminates: an advanced material for future aircraft, J. Mater. Process. Technol. 1997, 63(1-3), 384-394, DOI: 10.1016/S0924- 0136(96)02652-0.
- [7] Vlot A., Vogelesang L.B., De Vries T.J., Towards application of fibre metal laminates in large aircraft, Aircr. Eng. Aerosp. Technol. 1999, 71(6), 558-570.
- [8] Narayan Rao N., Rao P.M.V., First ply failure analysis of rectangular fiber metal laminated composite plates subjected to uniformly distributed loads, J. Fail. Anal. and Preven. 2019, 19(6), 1683-1690, DOI: 10.1007/s11668-019- 0768-x.
- [9] Sinmazçelik T., Avcu E., Bora M.Ö., Çoban O., A review: Fibre metal laminates, background, bonding types and applied test methods, Materials and Design 2008, (32)7, 3671- 3685, DOI: 10.1016/j.matdes.2011.03.011.
- [10] Bieniaś J., Jakubczak P., Low velocity impact resistance of aluminium/carbon-epoxy fiber metal laminates, Compos. Theory Pract. 2012, 12, 193-197.
- [11] Reddy J.N., Khdeir A.A., Buckling and vibration of laminated composite plates using various plate theories, AIAA J. 1989, 27(12), 1808-1817.
- [12] Sayyad A.S., Ghugal Y.M., On the free vibration analysis of laminated composite and sandwich plates: A review of recent literature with some numerical results, Compos. Struct. 2015, (129), 177-201, DOI: 10.1016/j.compstruct.2015.04.007.
- [13] Zhang Y.X., Yang C.H., Recent developments in finite element analysis for laminated composite plates, Compos. Struct. 2009, 88(1), 147-157, DOI: 10.1016/j.compstruct.2008.02.014.
- [14] Bassily S.F., Dickinson S.M., Buckling and lateral vibration of rectangular plates subject to inplane loads – a Ritz approach, J. Sound Vib. 1972, 24(2), 219-239, DOI: 10.1016/0022-460X(72)90951-0.
- [15] Numayr K.S., Haddad R.H., Haddad M.A., Free vibration of composite plates using the finite difference method, Thin-Walled Struct. 2004, 42(3), 399-414, DOI: 10.1016/j.tws.2003.07.001
- [16] Palardy R.F., Palazotto A.N., Buckling and vibration of composite plates using the Levy method, Compos. Struct. 1990, 14(1), 61-86, DOI: 10.1016/0263-8223(90)90059-N.
- [17] Ju F., Lee H.P., Lee K.H., Finite element analysis of free vibration of delaminated composite plates, Compos. Eng. 1995, 5(2), 195-209, DOI: 10.1016/0961-9526(95)90713-L.
- [18] Harras B., Benamar R., White R.G., Experimental and theoretical investigation of the linear and non-linear dynamic behaviour of a glare 3 hybrid composite panel, J. Sound Vib. 2002, 252(2), 281-315, DOI: 10.1006/jsvi.2001.3962.
- [19] Xu Z., Jiang Gao Z., Qi Zhao S., Feng Zhang Y., Chun Wen B., A nonlinear vibration model of fiber metal laminated thin plate with amplitude dependent property, Appl. Acoust. 2020, 164(1-14), DOI: 10.1016/j.apacoust.2020.107268.
- [20] Ghasemi A.R., Mohandes M., Free vibration analysis of micro and nano fiber-metal laminates circular cylindrical shells based on modified couple stress theory, Mech. Adv. Mater. Struct. 2020, 27(1), 43-54, DOI: 10.1080/15376494.2018.1472337.
- [21] Pushparaj P., Suresha B., Free vibration analysis of laminated composite plates using finite element method, Polym. Polym. Compos. 2016, 24(7), 529-538, DOI: 10.1177%2F096739111602400712.
- [22] Reddy J.N., Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, 1st ed., CRC Press, 2003.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-70c99f26-d50b-4e0f-9bde-45802390749c