PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Combining Effluent Treatment Methods to Remove Ammonia Nitrogen from Tannery Wastewater

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study assessed the removal efficiency of ammonia nitrogen from tannery wastewater by combining electrocoagulation, ozonation, and ion exchange technologies. For this purpose, an electrocoagulation reactor equipped with aluminum electrodes, an ozonation tank, and a filtration system with zeolite were employed. The electrocoagulation treatment applied the response surface methodology with a 3k factorial design with the following two factors: current intensity (I) ranging from 3 to 7A, and treatment time (t) from 10 to 30 min; the removal percentage of total suspended solids (TSS) is set as a response variable. Results indicate that the treatment time and current intensity were significant for the removal of total suspended solids TSS, at a confidence level of p < 0,05. Under these conditions, a TSS, removal efficiency of 98% was achieved. Through the electrocoagulation process, the chemical oxygen demand (COD) was reduced by 58%, while in the ozonation tank, an additional 23% of COD was removed. The filtration stage demonstrated that 13X HP zeolite can exchange ions with the ammonia nitrogen from tannery wastewater, wherein a 39% removal efficiency is reached at equilibrium. Thus, the integration of various treatment methods is a viable alternative to reduce wastewater from the tannery industry. The novelty of this research lies in the integration of three methods for treating tannery wastewater. The results show that the combination of these treatments provides a more effective solution for removing the pollutant load, especially nitrogen, compared to the use of individual treatment methods alone. The study opens new perspectives for optimizing multi-stage treatment processes.
Twórcy
  • Universidad de Lima, Instituto de Investigación Científica, Grupo de Investigación en Tecnologías Exponenciales, Estudios Generales, Av. Javier Prado Este 4600, Surco, Lima, Perú
  • Centro de Innovación Productiva y Transferencia Tecnológica del Cuero, Calzado e Industrias Conexas (CITEccal Lima). Instituto Tecnológico de la Producción (ITP), Caquetá Ave. 1300, 15094, Lima, Perú
  • Centro de Innovación Productiva y Transferencia Tecnológica del Cuero, Calzado e Industrias Conexas (CITEccal Lima). Instituto Tecnológico de la Producción (ITP), Caquetá Ave. 1300, 15094, Lima, Perú
Bibliografia
  • 1. Abdulrazzaq, N.N., Al-sabbagh, B.H., Shanshool, H.A. 2021. Coupling of Electrocoagulation and microflotation for the removal of textile dyes from aqueous solutions, J. Water Proc. Eng. 40, 101906, https://doi.org/10.1016/j.jwpe.2020.101906
  • 2. Aboulhassan, M.A., El Ouarghi, H., Ait Benichou, S., Ait Boughrous, A., Khalil, F. 2018. Influence of experimental parameters in the treatment of tannery wastewater by electrocoagulation, Separation Science and Technology, 53:17, 2717-2726, doi: 10.1080/01496395.2018.1470642.
  • 3. Aguilar-Ascón, E., Marrufo-Saldaña, L., Neyra-Ascón, W. 2019. Reduction of Total Chromium Levels from Raw Tannery Wastewater via Electrocoagulation using Response Surface Methodology. Journal of Ecological Engineering, 20(11), 217-224. https://doi.org/10.12911/22998993/113191
  • 4. Aguilar, E., Marrufo, L., Neyra, W. 2020. Efficency of electrocoagulation method to reduce COD, BOD and TSS in tannery industry wastewater: application of the box–behnken design. Leather and Footwear Journal. https://doi.org/10.24264/lfj.20.3.1
  • 5. Aguilar Ascon, E., Marrufo Saldaña, L., Neyra Ascón, W. 2023. Reducing Tannery Wastewater Pollutants through a Magnetic-Field and OzoneTreatment Electrocoagulation System using Response Surface Methodology. Journal of Ecological Engineering, 25(1), 74-83. https://doi.org/10.12911/22998993/173566
  • 6. Asaithambi, P., Susree, M., Saravanathamizhan, R., M. Matheswaran, M. 2012. Ozone assisted electrocoagulation for the treatment of distillery ef fl uent. DES 297, 1e7. https://doi.org/10.1016/j.desal.04.011
  • 7. Asaithambi, P., Aziz, A.R.A. Daud, W.M.A.B.W. 2016. Integrated ozone-electrocoagulation process for the removal of pollutant from industrial effluent: optimization through response surface methodology. Chem. Eng. Process 105, 92–102. https://doi.org/10.1016/j.cep.2016.03.013
  • 8. Aziz, A.R.A., Asaithambi, P., Daud, W.M.A.B.W. 2016. Combination of electrocoagulation with advanced oxidation processes for the treatment of distillery industrial effluent, Process Saf. Environ. Protect. 99-227–235.
  • 9. Barzegara, G., Wu, J., Ghanbari, F. 2019. Enhanced treatment of greywater using electrocoagulation/ ozonation: investigation of process parameters, Proc. Safety Environ. Prot. 121 - 125–132. https://doi.org/10.1016/j.psep.2018.10.013
  • 10. Behin, J., Farhadian, N., Ahmadi, M., Parvizi, M. 2015. Ozone assisted electrocoagulation in a rectangular internal-loop airlift reactor: Application to decolorization of acid dye. Journal of water process engineering, 8, 171-178.
  • 11. Bishwatma, B., Sudha, G. 2022. Electrocoagulation and electrooxidation technologies for pesticide removal from water or wastewater: A review, Chemosphere, Volume 302, 134709, ISSN 0045-6535, https://doi.org/10.1016/j.chemosphere.2022.134709
  • 12. Burns, S.E., Yiacoumi, S., Tsouris, C. 1997. Microbubble generation for environmental and industrial separations. In Separation and Purification Technology. (Vol. 11, Issue 3, pp. 221–232). Elsevier BV. doi: 10.1016/s1383-5866(97)00024-5.
  • 13. Can, O.T., Kobya, M., Demirbas, E., Bayramoglu, M. 2006. Treatment of the textile wastewater by combined electrocoagulation. Chemosphere 62, 181e187. https://doi.org/10.1016/j.chemosphere.(2006).05.022
  • 14. Choi, A.E.S., Futalan, C.C.M., J.J. Yee, J.J. 2020. Fuzzy optimization for the removal of uranium from mine 1 water using batch electrocoagulation: A case study. Nuclear Energy and Technology, 52(7), 1471–1480. https://doi.org/10.1016/j.net.12.016
  • 15. Chung, Y.CH., Son, D.-H., Ahn, D.-H. 2000. Nitrogen and organics removal from industrial wastewater using natural zeolite media. Water Science and Technology. 42. 127-134. 10.2166/wst.0506.
  • 16. De Magalhães, LF., da Silva, G.R., Peres, AEC., Kooh, MRR. 2022. Zeolite Application in Wastewater Treatment. Adsorption Science & Technology. doi:10.1155/2022/4544104.
  • 17. Deveci, E.Ü., Akarsu, C., Gönen, Ç., Özay, Y.2019. Enhancing treatability of tannery wastewater by integrated process of electrocoagulation and fungal via using RSM in an economic perspective. Process. Biochem. 84, 124–133. http://dx.doi.org/10.1016/J.PROCBIO.2019.06.016
  • 18. Dil, E.A., Ghaedi, M., Asfaram, A., Mehrabi, F., Sadeghfar, F. 2019. Efficient adsorption of Azure B onto CNTs/Zn: ZnO@Ni2P-NCs from aqueous solution in the presence of ultrasound wave based on multivariate optimization. Journal of Industrial and Engineering Chemistry, 74, 55–62. https://doi.org/10.1016/j.jiec.12.050
  • 19. Dogruel, S., Genceli, E., Germirli Babuna, F., Orhon, D. 2004. Ozonation of Nonbiodegradable Organics in Tannery Wastewater. Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering. 39. 1705-15. 10.1081/ESE-120037871.
  • 20. Ebba, M., Asaithambi, P., Alemayehu, E. 2022. Development of electrocoagulation process for wastewater treatment: optimization by response Surface methodology. Heliyon 8(5).
  • 21. Eberle, S., Viktor, S., Hilmar, B., S. Stefan, S. 2023. Natural Zeolites for the Sorption of Ammonium: Breakthrough Curve Evaluation and Modeling Molecules 28, no. 4: 1614. https://doi.org/10.3390/molecules28041614
  • 22. Ehsan Jafari, M., Reza, M., Heike, B., Peter, K. 2023. Impact of operating parameters of electrocoagulation-flotation on the removal of turbidity from synthetic wastewater using aluminium electrodes, Minerals Engineering, Volume 193, (2023),108007, https://doi.org/10.1016/j.mineng.108007
  • 23. Espinoza-Quiñones, FR., Fornari, M.M.T., Modenes, A.N., Palacio, S.M., Trigueros, D.G.E., Borba, F.H., A.D. Kroumov, A.D. 2009. Electrocoagulation efficiency of the tannery effluent treatment using aluminum electrodes, Water Sci Technol, 60, 2173-2185. https://doi.org/10.2166/wst.518
  • 24. Fashi, F., Ghaemi, A., Behroozi, A.H. 2021. Piperazine impregnation on Zeolite 13X as a novel adsorbent for CO2 capture: experimental and modeling, Chemical Engineering Communications, (2021). 208:8, 1104-1120. https://doi.org/10.1080/00986445.2020.1746657
  • 25. Ham, K., Kim, B., Choi, K.Y. 2018. Enhanced ammonium removal efficiency by ion exchange process of synthetic zeolite after Na+ and heat pretreatment. Water Science and Technology. 78.10.2166/wst.420.
  • 26. Houshyar, Z., Khoshfetrat, B., E. Fatehifar, E. 2012. Influence of ozonation process on characteristics of prealkalized tannery effluents. Chem. Eng. J. 191, 59–65.
  • 27. Huang, J., Kankanamge, N.R., Chow, C., Welsh, D.T. Li, T., Teasdale, P.R. 2018. Removing ammonium from water and wastewater using costeffective adsorbents: A review. Journal of environmental sciences (China), 63, 174–197. https://doi.org/10.1016/j.jes.(2018).09.009
  • 28. Howe, K.J., Hand, D.W., John, C., Crittenden, R. 2012. Rhodes Trussell, George Tchobanoglous. Principles of Water Treatment. John Wiley & Sons Inc, New Jersey.
  • 29. Iaconi, CD., Lopez, A., Ramadorai, R., Pinto, ACD., Passino, R. 2002. Combined chemical and biological degradation of tannery wastewater by a periodic submerged filter (SBBR). Water Res 36:2205–2214. doi:10.1016/S0043-1354(01)00445-6.
  • 30. Ibrahim, F.N.D., Daud, Z., Abdul Latiff, A.A., Ridzuan, M.B., Ahmad, Z., Awang, H., Marto, A. 2017. Ammoniacal Nitrogen and COD Removal Using Zeolite-Feldspar Mineral Composite Adsorbent. International Journal of Integrated Engineering, 8(3). Retrieved from (2017). https://penerbit.uthm.edu.my/ojs/index.php/ijie/article/view/1478
  • 31. Kamimoto, K., Hagio, T., Jung, YJ. 2020. Development of Synthetic Magnetic Zeolite Adsorbents and Application to Ammonium Ion Removal. KSCE J Civ Eng 24, 1395–1399. https://doi.org/10.1007/s12205-020-2185-5
  • 32. Khamidun, M.H., Fulazzaky, M.A., Mohamad, E.I., Gheethi, AI.A., Md Ali, U., Muda, K., Hadibarata, T., & Razi, M. 2020. Adsorption of ammonium from wastewater treatment plant effluents on to the zeolite; A plug-flow column, optimisation, dynamic and isotherms studies. International Journal of Environmental Analytical Chemistry. 102.10.1080/030673 19.2020.1849659.
  • 33. Khamidun, M., Ali Fulazzaky, M., Al-Gheethi, A., Ali, U. Md., Muda, K., Hadibarata, T., Mohammad Razi, M. 2022. Adsorption of ammonium from wastewater treatment plant effluents on to the zeolite; A plug-flow column, optimisation, dynamic and isotherms studies, International Journal of Environmental Analytical Chemistry. 102:19, 8445-8466, doi:10.1080/03067319.2020.1849659.
  • 34. Kong, X., Wang, Y., Ma, L., Huang, G., Zhang, Z., Han, Z. 2020. Leaching Behaviors of Chromium (III) and Ammonium-Nitrogen from a Tannery Sludge in North China: Comparison of Batch and Column Investigations. International journal of environmental research and public health, 17(16), 6003. https://doi.org/10.3390/ijerph17166003.
  • 35. Kongnoo, A., Tontisirin, S., Worathanakul, P., CH. Phalakornkule, CH. 2016. Surface characteristics and CO2 adsorption capacities of acid-activated zeolite 13X prepared from palm oil mill fly ash, Fuel, Volume 193, Pages 385-394, ISSN 0016-2361, https://doi.org/10.1016/j.fuel.2016.12.087
  • 36. Lanzetta, A., Papirio, S., Oliva, A., Cesaro, A., Pucci, L., Capasso, E.M., Esposito, G., Pirozzi, F. 2023. Ozonation Processes for Color Removal from Urban and Leather Tanning Wastewater. Water 2023, 15, 2362. https://doi.org/10.3390/w15132362
  • 37. Leta, S., Assefa, F., Gumaelius, L., Dalhammar, G. 2005. Biological nitrogen and organic matter removal from tannery wastewater in pilot plant operations in Ethiopia. Applied microbiology and biotechnology. 66. 333-9.10.1007/s00253-004-1715-2.
  • 38. Măicăneanu, A., Bedelean, H., Burcă, S., Stanca, M. 2011. Evaluation of Ammonium Removal Performances of Some Zeolitic Volcanic Tuffs from Transylvania, Romania, Separation Science and Technology, 46:10, 1621-1630, doi:10.1080/0149 6395.2011.561666.
  • 39. Malakootian, M., Mansoorian, H.J., Moosazadeh, M. 2010. Performance evaluation of electrocoagulation process using iron-rod electrodes for removing hardness from drinking water, Desalination, Volume 255, Issues 1–3, Pages 67-71. https://doi.org/10.1016/j.desal.2010.01.015
  • 40. Manenti, D., Módenes, A., Soares, P., EspinozaQuiñones, F., Boaventura, R., Bergamasco, R., Vilar, V. 2014. Assessment of a multistage system based on electrocoagulation, solar photo-Fentonvand biological oxidation processes for real textile wastewater treatment. Chemical Engineering Journal. 252. 120–130.10.1016/j.cej.04.096.
  • 41. Ouyang, W., Songsheng, Z., Chongjun, W., Xiaohui, H., Riyi, C., Lianghui, Z., Zhaolin, W. 2021. Dynamic ammonia adsorption by FAU zeolites to below 0.1 ppm for hydrogen energy applications, International Journal of Hydrogen Energy, Volume 46, Issue 64, Pages 32559-32569, ISSN 0360-3199, https://doi.org/10.1016/j.ijhydene.2021.07.107
  • 42. Pan, M., Zhang, M., Zou, X., Zhao, X., Deng, T., Chen, T., Huang, X. 2019. The investigation into the adsorption removal of ammonium by natural and modified zeolites: kinetics, isotherms, and thermodynamics. Water SA, 45(4), 648-656. https://dx.doi.org/10.17159/wsa/2019.v45.i4.7546
  • 43. Pan, L., Zhang, A., Yongjun, L., Zhe, L., Xingshe, L., Lu, Y., Zhuangzhuang, Y. 2022. Adsorption Mechanism of High-Concentration Ammonium by Chinese Natural Zeolite with Experimental Optimization and Theoretical Computation. Water. 14. 2413. 10.3390/w14152413.
  • 44. Prabhakaran, N., Patchai murugan, K., Jothieswari, M. et al. 2022. Tannery wastewater treatment process to minimize residual organics and generation of primary chemical sludge. Int. J. Environ. Sci. Technol. 19, 8857–8870 (2022). https://doi.org/10.1007/s13762-021-03634-2
  • 45. Preethi, V., Kalyani, K.S.P. K., Iyappan, C., Srinivasakannan, C., Balasubramaniam, N. 2009. Vedaraman, Ozonation of tannery effluent for removal of cod and color, J. Hazard. Mater., v.166, p. 150–154.
  • 46. Probst, J. Couperthwaite, S., Graeme, M., Kaparaju, P. 2022. Ammoniacal nitrogen removal and reuse: Process engineering design and technoeconomics of zeolite N synthesis. Journal of Environmental Chemical Engineering. https://doi.org/10.1016/j.jece.107942
  • 47.Rahmani, A.R., Mahvi, A.H., Mesdaghinia, A.R. 2004. Investigation of ammonia removal from polluted waters by Clinoptilolite zeolite. Int. J. Environ. Sci. Technol. 1, 125–133 (2004). https://doi.org/10.1007/BF03325825
  • 48. Sefatjoo, P., Alavi, M.R.A., Moghaddam, A.R. 2020. Mehrabadi, Evaluating electrocoagulation pretreatment prior to reverse osmosis system for simultaneous scaling and colloidal fouling mitigation: Application of RSM in performance and cost optimization. Journal of Water Process Engineering, 35, 101201. https://doi.org/10.1016/j.jwpe.101201
  • 49. Sundhararasu, E., Hanna, R., Teija Kangas, J.P., Ulla, L, and Sari, T. 2022. Column Adsorption Studies for the Removal of Ammonium Using NaZeolite-Based Geopolymers” Resources 11, no. 12: 119. https://doi.org/10.3390/resources11120119
  • 50. Srinivasan, S.V., Mary, G.P.S., Kalyanaraman, C. 2012. Combined advanced oxidation and biological treatment of tannery effluent. Clean Techn Environ Policy 14, 251–256. https://doi.org/10.1007/s10098-011-0393-x
  • 51. Sriram, B., Abhinav, K., Jyoti, K., Ruthviz, K., Jayaprakash, V. 2023. A state-of-the-art review of the electrocoagulation technology for wastewater treatment, Water Cycle, Volume 4 , Pages 26-36, ISSN 2666-4453, https://doi.org/10.1016/j.watcyc.2023.01.001
  • 52. Thushari, D., Wijesinghe, N., Kithsiri, B., Dassanayake Sven Sommer G., Guttila, Y., Jayasinghe P.J., Scales, CH. 2016. Deli, Ammonium removal from high-strength aqueous Solutions by Australian zeolite, Journal of Environmental Science and Health, Part A, 51:8, 614-625, (2016). doi: 10.1080/10934529.2016.1159861.
  • 53. Varank, G., Erkan, H., Yazýcý, S., Demir, A., Engin, G. 2014. Electrocoagulation of tannery wastewater using monopolar electrodes: process optimization by response surface methodology, Int J Environ Res, 8, 165–180. http://dx.doi.org/10.22059/IJER.2014.706
  • 54. Vukojevi´c Medvidovi´c, N., Vrsalovi´c, L., Svilovi´c, S., Bobanovi´c, A. 2022. Electrocoagulation vs. Integrate Electrocoagulation-Natural Zeolite for Treatment of Biowaste Compost Leachate – Whether the Optimum Is Truly Optimal. Minerals. https://doi.org/10.3390/min12040442
  • 55. Wang, S., Y. Peng, Y. 2010. Natural zeolites as effective adsorbents in water and wastewater treatment. Chemical Engineering Journal, 156(1), 11–24. doi: 10.1016/j.cej.10.029.
  • 56. Wang, C., Guo, H., Leng, S., Yu, J., Feng, K., Cao, L., Huang, J. 2020. Regulación de la hidrofilicidad/ hidrofobicidad de las zeolitas de aluminosilicato: una revisión. Revisiones críticas en ciencias del estado sólido y de los materiales, (2020). 46(4), 330–348. https://doi.org/10.1080/10408436.2020.1819198
  • 57. Wen, D., Ho, Y.S., Tang, X. 2006. Comparative sorption kinetic studies of ammonium onto zeolite. Journal of hazardous materials, 133(1-3), 252–256. https://doi.org/10.1016/j.jhazmat.10.020
  • 58. Wijesinghe, T., Dassanayake, K., Scales, P., Chen, D. 2016. Mitigation of nitrogen losses with Australian zeolites during the anaerobic digestion of swine manure.
  • 59. Wu, Z., Dong, J., Yao, Y.W., Yang, Y., F. Wei, F. 2021. Continuous flowing electrocoagulation reactor for efficient removal of azo dyes: Kinetic and isotherm studies of adsorption. Environ. Technol. Innov. 22.
  • 60. Xu, C., Wang, J., Yang, T., Chen, X., Liu, X., Ding, X. 2015. Adsorption of uranium by amidoximated chitosan-grafted polyacrylonitrile, using Response Surface Methodology. Carbohydrate Polymers, 121, 79–85. https://doi.org/10.1016/j.carbpol.12.024
  • 61. Xuejun, G., Larry, Z., Xiaomei, Li., Hung‐ Suck, P. 2007. Removal of Ammonium from RO Permeate of Anaerobically Digested Wastewater by Natural Zeolite, Separation Science and Technology, 42:14, 3169-3185, doi:10.1080/01496390701514949.
  • 62. Zaied, B.K., Rashid, M., Nasrullah, M., Zularisam, A.W., Pant, D., Singh, L. 2020. A comprehensive review on contaminants removal from pharmaceutical wastewater by electrocoagulation process, Sci. Total, Environ. 726, 138095, https://doi.org/10.1016/j.scitotenv.2020.138095
  • 63. Zhao, CH., Chen, W. 2019. A review for tannery wastewater treatment: some thoughts under stricter discharge requirements. Environmental Science and Pollution Research. 26.10.1007/s11356-019-05699-6.
  • 64. Zheng, H., Han, L., Ma, H., Zheng, Y., Zhang, H., Liu, D., S.P. Liang, S.P. 2008. Adsorption characteristics of ammonium ion by zeolite 13X. Journal of hazardous materials, 158 2-3, 577-84. https://doi.org/10.1016/j.jhazmat.01.115
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-70c4c4d3-3f1e-4508-a66b-0f00309d373a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.