PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Electrical equivalent model of symmetrical split ring resonator sensor-based microwave technology

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Model mikrofalowego czujnika wykorzystującego pierścieniowe rezonatory
Języki publikacji
EN
Abstrakty
EN
In this paper, a microwave planar sensor based on symmetrical split ring resonator (SSRR) is investigated. This sensor uses ring resonator with slits at 0o and 180o angles as method to realize the harmonic resonant frequency response and then, it integrated with symmetrical split ring for suppressing the undesired harmonic spurious. Compact size, simplicity, cost effective, and ease of fabrication are the main advantage of SSRR sensor. The model of analytical equivalent circuit is proposed and the characteristic of band-pass and band-stop are derived and investigated for the analysed SSRR with/without spurliners filters. The performance and sensitivity of the SSRR sensor is high with an average accuracy between 96% to 98 % at narrow band frequencies. This type of resonators sensors can detect the material properties under their chemical or physical changes which is essential for numerous applications such as quality control, agriculture, bio-sensing, medicine and pharmacy, food industry, and material science.
PL
Przedstawiono mikrofalowy czujnik planarny bazujący na symetrycznych pierścieniowych rezonatorach. Wykorzystano pierścieniowy rezonator ze szczeliną przy kącie 0o i 180o w celu uzyskania odpowiedniej częstotliwości rezonansowej. Zaproponowano schemat zastępczy czujnika skąd obliczono pasmo częstotliwości. Czujnik może być wykorzystywany do badania materiałów.
Rocznik
Strony
168--175
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
  • Microwave Research Group, Centre for Telecommunication Research and Innovation (CeTRI), Faculty of Electronics and Computer Engineering, Universiti Teknikal Malaysia Melaka (UTeM), 76100 Durian Tunggal, Melaka, Malaysia
  • Microwave Research Group, Centre for Telecommunication Research and Innovation (CeTRI), Faculty of Electronics and Computer Engineering, Universiti Teknikal Malaysia Melaka (UTeM), 76100 Durian Tunggal, Melaka, Malaysia
  • Microwave Research Group, Centre for Telecommunication Research and Innovation (CeTRI), Faculty of Electronics and Computer Engineering, Universiti Teknikal Malaysia Melaka (UTeM), 76100 Durian Tunggal, Melaka, Malaysia
  • Microwave Research Group, Centre for Telecommunication Research and Innovation (CeTRI), Faculty of Electronics and Computer Engineering, Universiti Teknikal Malaysia Melaka (UTeM), 76100 Durian Tunggal, Melaka, Malaysia
  • Microwave Research Group, Centre for Telecommunication Research and Innovation (CeTRI), Faculty of Electronics and Computer Engineering, Universiti Teknikal Malaysia Melaka (UTeM), 76100 Durian Tunggal, Melaka, Malaysia
  • Microwave Research Group, Centre for Telecommunication Research and Innovation (CeTRI), Faculty of Electronics and Computer Engineering, Universiti Teknikal Malaysia Melaka (UTeM), 76100 Durian Tunggal, Melaka, Malaysia
Bibliografia
  • [1] Kang, B.,; Cho, J.,; Cheon, C., and Kwon, Y.,: Nondestructive Measurement of Complex Permittivity and Permeability Using Multilayered Coplanar Waveguide Structures, IEEE Microw. Wirel. Components Lett., 15 (2005), no. 5, pp. 381–383.
  • [2] Ansari, M.A.H.,; Jha, A.K., and Akhtar, M.J.,: Permittivity Measurement of Common Solvents Using the CSRR Based Sensor, Antennas Propag. Usn. Natl. Radio Sci. Meet. 2015 IEEE Int. Symp., 1 (2015), no. 2, pp. 1199–1200.
  • [3] Boybay, M.S., and Ramahi, O.M.,: Non-Destructive Thickness Measurement Using Quasi-Static Resonators, IEEE Microw. Wirel. Components Lett., 23 (2013), no. 4, pp. 217–219.
  • [4] Alahnomi, R.A.,; Zakaria, Z.,; Ruslan, E.,; Rashid, S.R.A.,; Azuan, A., and Bahar, M.,: High - Q Sensor Based on Symmetrical Split Ring Resonator with Spurlines for Solids Material Detection, (2017), no. c.
  • [5] Alahnomi, R.A.,; Zakaria, Z.,; Ruslan, E.,; Rashid, S.R.A.,; Azuan, A.,; Bahar, M., and Shaaban, A.,: Microwave Biosensor Based on Symmetrical Split Ring Resonator with Spurlines Filters for Therapeutic Goods Detections, PLoS One, (2016).
  • [6] Azuan, A.,; Bahar, M.,; Zakaria, Z.,; Rosmaniza, S.,; Rashid, A., and Isa, A.A.,: Microstrip Planar Resonator Sensors for Accurate Dielectric Measurement of microfluidic solutions, 3rd Int. Conf. Electron. Des., (2016), pp. 416–421.
  • [7] Alahnomi, R.,; Binti, N.,; Hamid, A.,; Zakaria, Z.,; Sutikno, T., and Azuan, A.,: Microwave Planar Sensor for Permittivity Determination of Dielectric Materials, 11 (2018), no. 1, pp. 362– 371.
  • [8] Alahnomi, R.A.,; Zakaria, Z.,; Ruslan, E., and Isa, A.A.M.,: Optimization Analysis of Microwave Ring Resonator for Biosensing Application, Int. J. Appl. Eng. Res., 10 (2015), no. 7, pp. 18395–18406.
  • [9] Collin, R.E.,: Foundations for Microwave Engineering, 2nd Editio ed., IEEE Press Series On Electromagnetic Wave Theory, 2001.
  • [10] Saeed, K.,: Microwave Materials Characterisation using Planar Resonant Sensors, Univ. Leeds, (2008), no. July.
  • [11] Chen, L.F.,; Ong, C.K.,; Neo, C.P.,; Varadan, V. V, and Varadan, V.K.,: Microwave electronics: measurement and materials characterization, John Wiley & Sons Ltd, 2004.
  • [12] Kulkarni, S., and Joshi, M.S.,: Design and Analysis of Shielded Vertically Stacked Ring Resonator as Complex Permittivity Sensor for Petroleum Oils, IEEE Trans. Microw. Theory Tech., 63 (2015), no. 8, pp. 2411–2417.
  • [13] Von, A.R., and Hippe,: Dielectric Materials and Applications, Massachusetts Institute of Technology. John Wiley and Sons, no date.
  • [14] Shaji, M., and Akhtar, M.J.,: Microwave coplanar sensor system for detecting contamination in food products, IEEE MTT-S Int. Microw. RF Conf., (2013), pp. 1–4.
  • [15] Jha, A.K., and Jaleel Akhtar, M.,: Automated RF measurement system for detecting adulteration in edible fluids, 2013 IEEE Appl. Electromagn. Conf., (2013), no. 1, pp. 1–2.
  • [16] Celik, N.,; Gagarin, R.,; Huang, G.C.,; Iskander, M.F., and Berg, B.W.,: Microwave Stethoscope : Development and Benchmarking of a Vital Signs Sensor Using Computer- Controlled Phantoms and Human Studies, IEEE Trans. Biomed. Eng., 61 (2014), no. 8, pp. 2341–2349. PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 96 NR 8/2020 175
  • [17] Jilani, M.T.,; Wen, W.P.,; Zakariya, M.A., and Cheong, L.Y.,: Dielectric Method d for Determination of f Fat Content at 1 GHz Frequency, IEEE, (2014), pp. 2–5.
  • [18] Abduljabar, A.,; Yang, X.,; Barrow, D., and Porch, A.,: Microstrip Split Ring Resonator for Microsphere Detection and Characterization, Microw. Symp. (IMS), 2015 IEEE MTT-S Int., (2015), pp. 1–4.
  • [19] Boybay, M.S., and Ramahi, O.M.,: Material Characterization Using Complementary Split-Ring Resonators, IEEE Trans. Instrum. Meas., 61 (2012), no. 11, pp. 3039–3046.
  • [20] Ansari, M.A.H.,; Jha, A.K., and Akhtar, M.J.,: Design and Application of the CSRR Based Planar Sensor for Non-Invasive Measurement of Complex Permittivity, IEEE Sens. J., (2015), no. c.
  • [21] Zhou, J.,; Jia, P.,; Zhang, Y., and He, X.,: High sensitive biosensor based on aSRR and high-impedance microstrip line, 2nd Int. Conf. Meas. Inf. Control, (2013), pp. 234–237.
  • [22] Kulkarni, S., and Joshi, M.S.,: Design and Analysis of Shielded Vertically Stacked Ring Resonator as Complex Permittivity Sensor for Petroleum Oils, IEEE Trans. Microw. Theory Tech., 63 (2015), no. 8, pp. 2411–2417.
  • [23] Hunter, I.,: Theory and Design of Microwave Filters, First edit ed., The Institution of Engineering and Technology, 2001.
  • [24] Zobilah, A.M.,; Othman, A.,; Shairi, N.A., and Zakaria, Z.,: Parametric studies of ring and parallel coupled line resonators for matched bandstop filter design, 14 (2019), no. 1, pp. 29–37.
  • [25] Zobilah, A.M.,; Shairi, N.A.,; Zakaria, Z.,; Ahmad, B.H.,; Zahari, M.K., and Wong, P.W.,: Simulation Analysis on the Potential Application of Matched Bandstop to Bandpass Filter in Filter Integrated SPDT Switch Design, 10 (2018), no. 4, pp. 127–131.
  • [26] Angkawisittpan, N.,: Miniaturization of bandstop filter using double spurlines and double stubs, Przegląd Elektrotechniczny (Electrical Rev., (2012), no. 11, pp. 178–181.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-70c2dfab-2624-4756-ba86-c0c7f02af561
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.