PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Friction wear resistance of 42CrMo4 surface layer after low-pressure ferritic nitrocarburising (FNC)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The work aimed to assess the performance properties of layers produced using the low-pressure ferritic nitrocarburising technology, in particular wear resistance under friction conditions. The assessment has been made in relation to analogous elements subjected only to heat treatment (hardening with tempering). Design/methodology/approach: The material for the tests consisted of two groups of friction pairs (5 friction pairs in each group) made of 42CrMo4 steel. The 42CrMo4 steel has been heat-treated (hardening at 880°C in oil, tempering at 570°C for 2 hours). Half of the samples have been subjected to low-pressure ferritic nitrocarburising at 560°C for 6 hours. The friction test has been conducted according to the PN-75/M-04308 standard for 2 minutes at a load of 445 N. Findings: The test results showed that the elements after ferritic nitrocarburising had almost twice the surface hardness (662 HV1) than the control group (339 HV1). The average weight wear of the heat-treated and ferritic nitrocarburised elements has been 0.011 g, with an average wear in the control group of 1.022 g. The average friction coefficient in the heat-treated and ferritic nitrocarburised friction pairs was 0.188, while in the heat-treated only pairs, it was 0.358. The Man-Whitney U test has shown that the differences between the average weight wear and the average friction coefficient values are significant (p<0.05). Research limitations/implications: The paper investigates the effect of low-pressure ferritic nitrocarburising technology on the surface layer of steel materials. Practical implications: Low-pressure ferritic nitrocarburising technology shows the potential for practical applications in industrial reality at a level at least equivalent to those currently used worldwide. Originality/value: It is the first known publication on the effect of low-pressure ferritic nitrocarburising technology on the performance properties of the surface layer of elements improved by this method.
Rocznik
Strony
24--30
Opis fizyczny
Bibliogr. 40 poz.
Twórcy
autor
  • Institute of Materials Science and Engineering, Lodz University of Technology, 1/15 Stefanowski Street, 90-537 Łódź, Poland
autor
  • Institute of Materials Science and Engineering, Lodz University of Technology, 1/15 Stefanowski Street, 90-537 Łódź, Poland
  • Institute of Materials Science and Engineering, Lodz University of Technology, 1/15 Stefanowski Street, 90-537 Łódź, Poland
Bibliografia
  • [1] D. Pye, Practical nitriding and ferritic nitrocarburizing, ASM International, Materials Park, Ohio, 2003.
  • [2] D. Pye, Nitriding and Nitrocarburizing, in: Q.J. Wang, Y.-W. Chung (eds), Encyclopedia of Tribology, Springer US, Boston, MA, 2013, 2421-2428. DOI: https://doi.org/10.1007/978-0-387-92897-5_1191
  • [3] E. Wołowiec-Korecka, Carburizing and nitriding of iron alloys, Springer, Cham, 2024.
  • [4] J. Taczała-Warga, S. Pawęta, Low-pressure ferritic nitrocarburizing: a review, Archives of Materials Science and Engineering 119/2 (2023) 62-70. DOI: https://doi.org/10.5604/01.3001.0053.4742
  • [5] R. Sisson, H. You, Ferritic nitrocarburizing of quenched and tempered steels - compound layer phase composotion profiles, Proceedings of Furnaces North America 2022 “FNA 2022”, Indianapolis, IN, 2022.
  • [6] P. Magdinier, M. Desbouche-Janny, A method of surface treatment of a steel element by nitriding or nitrocarburizing, oxidation, and then impregnation, United States Patent no. US 10,774,414 B2, 2020.
  • [7] M. Betiuk, J. Michalski, J. Tacikowski, P. Wach, K. Burdyński, Z. Łataś, T. Frączek, A method of ion nitriding or nitrocarburizing of the surface of metal objects, Institute of Precision Mechanics, Poland, 2018.
  • [8] M. Betiuk, J. Michalski, J. Tacikowski, Z. Łataś, T. Frączek, K. Maźniak, A method of glow nitriding or nitrocarburizing of the surface of metal objects, Institute of Precision Mechanics, Poland, 2017.
  • [9] T. Żółciak, A method of gaseous nitriding and nitrocarburizing of ferritic alloy steels in fluidized bed furnaces, Institute of Precision Mechanics, Poland, 2016.
  • [10] M. Perez, F.J. Belzunce, A comparative study of salt-bath nitrocarburizing and gas nitriding followed by post-oxidation used as surface treatments of H13 hot forging dies, Surface and Coatings Technology 305 (2016) 146-157. DOI: https://doi.org/10.1016/j.surfcoat.2016.08.003
  • [11] E. Roliński, Plasma-assisted nitriding and nitro-carburizing of steel and other ferrous alloys, in: E.J. Mittemeijer, M.A.J. Somers (eds), Thermochemical Surface Engineering of Steels, Woodhead Publishing, Sawston, Cambridge, 2015, 413-457. DOI: https://doi.org/10.1533/9780857096524.3.413
  • [12] M. Mirjani, A. Shafyei, F. Ashrafizadeh, Plasma and gaseous nitrocarburizing of C60W steel for tribological applications, Vacuum 83/7 (2009) 1043-1048. DOI: https://doi.org/10.1016/j.vacuum.2008.12.004
  • [13] P. Kula, D. Siniarski, M. Krasowski, The influence of preliminary introduction of ammonia gas in nitro-carburizing process on the case depth and materials properties, Inżynieria Materiałowa 3-4 (2007) 650-653.
  • [14] S. Matveev, V. Malakhov, K. Yagudin, A. Arzhankin, G. Osipova, Short-Term Gas Nitrocarburizing of Tools for Cutting and Die Forging, Metal Science and Heat Treatment 47 (2005) 484-486. DOI: https://doi.org/10.1007/s11041-006-0016-z
  • [15] F. Cajner, D. Landek, E. Stupnisek Lisac, Improvement of properties of steels applying salt bath nitrocarburizing with post-oxidation, Materiali in Tehnologije 37/6 (2003) 333-339.
  • [16] S. Pawęta, M. Gałęziewska, A. Rewers, P. Pawęta, B. Szternal, R. Pietrasik, Low‐pressure nitrocarburizing in standard vacuum furnaces - preliminary studies, Advanced Engineering Materials 25/24 (2023) 2301166. DOI: https://doi.org/10.1002/adem.202301166
  • [17] E. Wołowiec-Korecka, Case hardening development review (2001-2020), Archives of Materials Science and Engineering 120/2 (2023) 70-85. DOI: https://doi.org/10.5604/01.3001.0053.6922
  • [18] PN-75/M-04308, Strength tests of metals. Testing of metal wear by friction on the Falex machine, 1975 (in Polish).
  • [19] A. Sokołowski, On the correct use of statistics in scientific publications – a statistician’s perspective, in: Proceedings of the Applications of Statistics and Data Mining in Scientific Research, 17 October 2024, StatSoft Polska, on-line, 2024.
  • [20] Q.J. Wang, Y.W. Chung (eds), Encyclopedia of Tribology, Springer, Boston, 2013.
  • [21] M.A.J. Sommers, Nitriding and Nitrocarburizing; Current Status and Future Challenges, Proceedings of the Heat Treatment and Surface Engineering Conference and Expo, Chennai, India, 2013.
  • [22] C. Dawes, D. Tranter, NITROTEC surface-treatment technology, Heat Treatment of Metals 12 (1985) 70-76.
  • [23] P. Kula, E. Wołowiec, R. Pietrasik, K. Dybowski, B. Januszewicz, Non-steady state approach to the vacuum nitriding for tools, Vacuum 88 (2013) 1-7. DOI: https://doi.org/10.1016/j.vacuum.2012.08.001
  • [24] P. Kula, R. Pietrasik, E. Wołowiec, B. Januszewicz, A. Rzepkowski, Low-pressure nitriding according to the FineLPN technology in multi-purpose vacuum furnaces, Advanced Materials Research 586 (2012) 230-234. DOI: https://doi.org/10.4028/www.scientific.net/AMR.586. 230
  • [25] A. Leineweber, T. Gressmann, E. Mittemeijer, Simultaneous control of the nitrogen and carbon activities during nitrocarburising of iron, Surface and Coatings Technology 206/11-12 (2012) 2780-2791. DOI: https://doi.org/10.1016/j.surfcoat.2011.11.035
  • [26] E.J. Mittemeijer, M.A.J. Somers, Thermodynamics, kinetics, and process control of nitriding, Surface Engineering 13/6 (1997) 483-497. DOI: https://doi.org/10.1179/sur.1997.13.6.483
  • [27] E.J. Mittemeijer, Fundamentals of Nitriding and Nitrocarburizing, in: J.L. Dossett, G.E. Totten (eds), Steel Heat Treating Fundamentals and Processes, ASM International, Materials Park, OH, 2013, 619-646. DOI: https://doi.org/10.31399/asm.hb.v04a.a0005818
  • [28] J. Michalski, K. Burdyński, P. Wach, Z. Łataś, Nitrogen availability of nitriding atmosphere in controlled gas nitriding processes, Archives of Metallurgy and Materials 60/2 (2015) 747-754. DOI: https://doi.org/10.1515/amm-2015-0201
  • [29] P. Kula, R. Pietrasik, K. Dybowski, Vacuum carburizing - process optimization, Journal of Materials Processing Technology 164-165 (2005) 876-881. DOI: https://doi.org/10.1016/j.jmatprotec.2005.02.145
  • [30] P. Kula, Ł. Kaczmarek, K. Dybowski, R. Pietrasik, M. Krasowski, Activation of carbon deposit in the process of vacuum carburizing with preliminary nitriding, Vacuum 87 (2013) 26-29. DOI: https://doi.org/10.1016/j.vacuum.2012.06.018
  • [31] E. Wołowiec-Korecka, Methods of data mining for modelling of low-pressure heat treatment, Journal of Achievements in Materials and Manufacturing Engineering 85/1 (2017) 31-40. DOI: https://doi.org/10.5604/01.3001.0010.7987
  • [32] E. Wołowiec-Korecka, Modeling methods for gas quenching, low-pressure carburizing and low-pressure nitriding, Engineering Structures 177 (2018) 489-505. DOI: https://doi.org/10.1016/j.engstruct.2018.10.003
  • [33] E. Wołowiec-Korecka, M. Korecki, L. Klimek, Influence of flow and pressure of carburising mixture on low-pressure carburising process efficiency, Coatings 12/3 (2022) 337. DOI: https://doi.org/10.3390/coatings12030337
  • [34] E. Wołowiec-Korecka, M. Korecki, M. Sut, A. Brewka, P. Kula, Calculation of the mixture flow in a low-pressure carburizing process, Metals 9/4 (2019) 439. DOI: https://doi.org/10.3390/met9040439
  • [35] M. Korecki, E. Wołowiec-Korecka, M. Sut, A. Brewka, W. Stachurski, P. Zgórniak, Precision case hardening by low pressure carburizing (LPC) for high volume production, HTM Journal of Heat Treatment and Materials 72/3 (2017) 175-183. DOI: https://doi.org/10.3139/105.110325
  • [36] E. Wołowiec-Korecka, J. Michalski, B. Kucharska, Kinetic aspects of low-pressure nitriding process, Vacuum 155 (2018) 292-299. DOI: https://doi.org/10.1016/j.vacuum.2018.06.025
  • [37] E. Wołowiec-Korecka, P. Kula, S. Pawęta, R. Pietrasik, J. Sawicki, A. Rzepkowski, Neural computing for a low-frictional coatings manufacturing of aircraft engines’ piston rings, Neural Computing and Applications 31 (2019) 4891-4901. DOI: https://doi.org/10.1007/s00521-018-03987-9
  • [38] J. Michalski, E. Wołowiec-Korecka, A study of the parameters of nitriding processes. Part 1, Metal Science and Heat Treatment 61 (2019) 183-190. DOI: https://doi.org/10.1007/s11041-019-00398-y
  • [39] J. Michalski, E. Wołowiec-Korecka, A study of the parameters of nitriding processes. Part 2, Metal Science and Heat Treatment 61 (2019) 351-359. DOI: https://doi.org/10.1007/s11041-019-00429-8
  • [40] E. Wołowiec-Korecka, J. Michalski, B. Januszewicz, The stability of the layer nitrided in the low-pressure nitriding process, Coatings 13/2 (2023) 257. DOI: https://doi.org/10.3390/coatings13020257
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-70c2ac68-7d30-4970-abb3-bc212d3b9e8c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.