PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Comparison of some properties and molecular structure of MHPOBC and chlorinated MHPOBC

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Porównanie niektórych właściwości i struktury molekularnej MHPOBC i chlorowanego MHPOBC
Języki publikacji
EN
Abstrakty
EN
Comparison of molecular structure of MHPOBC and chlorinated MHPOBC has been made and presented in the paper. The main difference in molecular structure of MHPOBC and chlorinated MHPOBC molecules consists in different properties of two chemical bonds between the benzene ring with substituted chlorine atom and neighbouring parts of molecule. For chlorinated version of MHPOBC the component of molecular dipole moment perpendicular to the long axis of molecule is substantially smaller than for MHPOBC molecules. As a result of chlorination core of MHPOBC molecules becomes more flexible. These differences of molecular structure lead to easily noticeable differences in macroscopic properties of MHPOBC and its chlorinated version.
PL
Porównano strukturę molekuły i niektóre właściwości fizyczne MHPOBC i MHPOBC-Cl. Podstawowa różnica struktury molekuły polega na różnicy właściwości dwu wiązań chemicznych pomiędzy pierścieniem benzenowym zawierającym atom chloru a sąsiednimi fragmentami molekuły. Dla chlorowanej wersji MHPOBC obliczona składowa momentu dipolowego prostopadła do długiej osi molekuły jest istotnie mniejsza niż w przypadku molekuły MHPOBC. W wyniku zmiany właściwości niektórych wiązań molekuła MHPOBC-Cl staje się mniej sztywna. Konsekwencją tych różnic właściwości molekuł są istotne różnice właściwości fizycznych obydwu substancji.
Rocznik
Tom
Strony
5--21
Opis fizyczny
Bibliogr. 25 poz., 1 il. kolor., rys., wykr.
Twórcy
  • Institute of Physics, Lodz University of Technology, ul. Wólczańska 219, 90-924 Łódź
Bibliografia
  • [1] Chandani A.D.L., Hagiwara T., Suzuki Y., Ouchi Y., Takezoe Y., Fukuda A., 1988. Smectic C* chevron layer structure studied by x-ray diffraction, Jap. J. Appl. Phys. 27: L729-L732.
  • [2] Chandani A.D.L., Ouchi Y., Takezoe H., Fukuda A., Tarashima K., Furukawa K., Kishi A. 1989. Novel phases exhibiting tristable switching. Jap.J.Appl.Phys. Part 2. Lett. 28: L1261-L1264.
  • [3] Chandani A.D.L., Górecka E., Ouchi Y., Takezoe H., Fukuda A. 1989. Antiferroelectric chiral smectic phases responsible for the trislable switching in MHPOBC. Jap. J. Appl. Phys. Part 2 Lett. 28: L1265-L1268.
  • [4] Lagerwall J.P.F, Rudquist P., Lagerwall S.T., Giesselmann F., 2003. On the phase sequence of antiferroelectric liquid crystals and its relation to prientational and translational order. Liq. Cryst. 30: 399-414.
  • [5] Górecka E., Pociecha D., Cepic M., Zeks B., Dąbrowski R., 2002. Enantiomeric excess dependence of the phase diagram of antiferroelectric liquid crystals. Phys. Rev. E 65: 061703.
  • [6] Perkowski P., Mrukiewicz M., Żurowska M., Dąbrowski R., Jaroszewicz L. 2013. Dielectric modes in antiferroelectric liquid crystal observed at low temperatures. Liq. Cryst. 40: 864-870.
  • [7] Marzec M., Mikułko A., Wróbel S., Dąbrowski M., Darius M., Haase W. 2004. Alpha sub-phase in a new ferroelectric fluorinated compound. Liq. Cryst. 31: 153- 159.
  • [8] Pandey M.B., Dhar R., Dąbrowski R. 2006. Dielectric spectroscopy of a newly synthesized chlorinated analogue of MHPOBC antiferroelectric liquid crystals. Ferroelectrics 34: 83-100.
  • [9] Takezoe H., Górecka E., Cepic M. 2020. Antiferroelectric liquid crystals: interplay of simplicity and complexity. Rev. Mod. Phys. 82: 897-937.
  • [10] Chandrasekhar S. 1977. Liquid Crystals, Cambridge University Press.
  • [11] de Gennes P.G., Prost J. 1993. The physics of liquid crystals, Clarendon.
  • [12] Yen C.-C., Tokita M., Park B., Takezoe H., Watanabe J. 2006. Spontaneous organization of helical polypeptide molecules into polar packing structure. Macromolecules 39: 1313-1315.
  • [13] Koike M., Yen C.-C., Yuqing L., Tsuchiya H., Tokita M., Kawauchi S., Takezoe H., Watanabe J. 2007. Unusual nematic liquid crystal with polar Cs symmetry formed from aromatic polyesters with head-tail character. Macromolecules 40: 2524-2531.
  • [14] Furukawa K., Terashima K., Ichinashi M., Saitoh S., Miyazawa K., Inukai T. 1988. Chiral smectic C liquid crystals having an electronegative substituent ortho to the chiral tail group - a study of a factor determining the magnitude of spontaneous polarization. Ferroelectrics 85: 451-459.
  • [15] Sasaki T., Ikeda T. 1995. Photochemical control of properties of ferroelectric liquid crystals. 1. Effect of structure of host ferroelectric liquid crystals on the photochemical switching of polarization. J. Phys. Chem. 99: 1302-1307.
  • [16] Pandey M.B., Dhar R., Agrawal V.K., Dąbrowski R., Tykarska M. 2004. Study of different modes of dielectric relaxation in a newly synthesized material exhibiting ferro-, ferri- and antiferro-electric phases. Liq. Cryst. 31: 973-987.
  • [17] Marzec M., Wróbel S., Gondek E., Dąbrowski R. 2004. Room temperature antiferroelectric phase studied by electrooptic methods. Mol. Cryst. Liq. Cryst. 410: 153-161.
  • [18] Pandey M.B., Dąbrowski R., Dhar R. 2007. Investigation of relaxation processes in anticlinic smectic C* (SmC*A) phase of liquid crystals by dielectric spectroscopy. Physica B 387: 25-31.
  • [19] Pandey M.B., Dhar R., Dąbrowski R. 2008. Amplitude and phase fluctuation modes in the smectic Cα* phase of an antiferroelectric compound. Liq. Cryst. 34: 777-787.
  • [20] Gąsowska J., Dąbrowski R., Drzewiński W., Filipowicz M., Przedmojski J., Kenig K. 2004. Comparison of mesomorphic properties in chiral and achiral homologous series of high tilted ferroelectrics and antiferroelectrics. Ferroelectrics 309: 83-93.
  • [21] Schlegel H.B. 1982. Optimization of equilibrium geometries and transition structures. J. Comput. Chem. 3: 214-218.
  • [22] Gaussian 09. Revision D.01. 2013. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery Jr. J.A., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M.,. Klene M, Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. Gaussian, Inc., Wallingford CT.
  • [23] Bąk G.W., Wojciechowski M., Tykarska M. 2015. Some physical properties of liquid crystalline 1H6Bi compound. J. Mol. Liq. 201: 43-49.
  • [24] Włodarska M. 2014. Dipole moment calculation in solution for some liquid crystalline molecules. J. Mol. Structure 1059: 44-50.
  • [25] Takezoe H. 2014. Historical overview of polar liquid crystals. Ferroelectrics 468: 1-17.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-70c20b7e-d68b-46e9-8b02-724e575b1325
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.