PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Probabilistic and explainable modeling of Phase-Phase Cross-Frequency Coupling patterns in EEG. Application to dyslexia diagnosis

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work explores the intricate neural dynamics associated with dyslexia through the lens of Cross-Frequency Coupling (CFC) analysis applied to electroencephalography (EEG) signals evaluated from 48 seven-year-old Spanish readers from the LEEDUCA research platform. The analysis focuses on CFS (Cross-Frequency phase Synchronization) maps, capturing the interaction between different frequency bands during low-level auditory processing stimuli. Then, making use of Gaussian Mixture Models (GMMs), CFS activations are quantified and classified, offering a compressed representation of EEG activation maps. The study unveils promising results specially at the Theta-Gamma coupling (Area Under the Curve = 0.821), demonstrating the method’s sensitivity to dyslexia-related neural patterns and highlighting potential applications in the early identification of dyslexic individuals.
Twórcy
  • Department of Communications Engineering, University of Malaga, Blvd. Louis Pasteur 35, Malaga, 29010, Malaga, Spain
  • Institute for Systems and Robotics (Lisboa/LARSyS) and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisbon, 1049-001, Lisbon, Portugal
  • Department of Communications Engineering, University of Malaga, Blvd. Louis Pasteur 35, Malaga, 29010, Malaga, Spain
  • Department of Communications Engineering, University of Malaga, Blvd. Louis Pasteur 35, Malaga, 29010, Malaga, Spain
  • Department of Communications Engineering, University of Malaga, Blvd. Louis Pasteur 35, Malaga, 29010, Malaga, Spain
  • Institute for Systems and Robotics (Lisboa/LARSyS) and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisbon, 1049-001, Lisbon, Portugal
  • Department of Developmental and Educational Psychology, University of Malaga, Dr. Ortiz Ramos 12, Malaga, 29010, Malaga, Spain
Bibliografia
  • [1] Reid G. The SAGE handbook of dyslexia. SAGE Publications; 2008.
  • [2] Hulme C, Snowling M. Reading disorders and dyslexia. Curr Opin Pediatrics2016;28:731-5.
  • [3] McArthur G, Kohnen S, Larsen L, Jones K, et al. Getting to grips with theheterogeneity of developmental dyslexia. Cogn Neuropsychol 2013;30:1-24.
  • [4] Pacheco A, Reis A, Araújo S, Inácio F, et al. Dyslexia heterogeneity: cognitive profiling of portuguese children with dyslexia. Read Writ 2014;27:1529-45.
  • [5] Zoubrinetzky R, Bielle F, Valdois S. New insights on developmental dyslexia subtypes: Heterogeneity of mixed reading profiles. PLoS One 2014;9:e99337.
  • [6] Giraud A, Poeppel D. Cortical oscillations and speech processing: emerging computational principles and operations. Nat Neurosci 2012;15:511-7.
  • [7] Soltész F, Szűcs D, Leong V, White S, Goswami U. Differential entrainment of Neuroelectric Delta oscillations in developmental dyslexia. PLoS One2013;8:e76608.
  • [8] Gross J, Hoogenboom N, Thut G, Schyns P, et al. Speech rhythms and multiplexed oscillatory sensory coding in the human brain. PLoS Biol2013;11:e1001752.
  • [9] Keitel A, Gross J, Kayser C. Perceptually relevant speech tracking in auditory and motor cortex reflects distinct linguistic features. PLoS Biol 2018;16:e2004473.
  • [10] Keshavarzi M, Mandke K, Macfarlane A, Parvez L, et al. Atypical beta-band effects in children with dyslexia in response to rhythmic audio-visual speech.Clin Neurophysiol 2024;160:47-55.
  • [11] Gallego-Molina N, Formoso M, Ortiz A, Martínez-Murcia F, Luque J. Temporal EigenPAC for dyslexia diagnosis. In: Advances in computational intelligence.2021, p. 45-56.
  • [12] Gallego-Molina N, Ortiz A, Martínez-Murcia F, Rodríguez-Rodríguez I. Unraveling dyslexia-related connectivity patterns in EEG signals by Holo-Hilbert spectral analysis. In: Artificial intelligence in neuroscience: affective analysis and health applications. 2022, p. 43-52.
  • [13] Formoso M, Ortiz A, Martinez-Murcia F, Gallego N, Luque J. Detecting phase-synchrony connectivity anomalies in EEG signals. Application to dyslexia diagnosis. Sensors 2021;21:7061.
  • [14] Gallego-Molina N, Ortiz A, Martínez-Murcia F, Formoso M, Giménez A. Complex network modeling of EEG band coupling in dyslexia: An exploratory analysis of auditory processing and diagnosis. Knowl-Based Syst 2022;240:108098.
  • [15] Attaheri A, Ní Choisdealbha Á, Liberto G, Rocha S, et al. Delta- and theta-band cortical tracking and phase-amplitude coupling to sung speech by infants. NeuroImage 2022;247:118698.
  • [16] Nadalin J, Martinet L, Blackwood E, Lo M, et al. A statistical framework to assess cross-frequency coupling while accounting for confounding analysis effects. ELife2019;8.
  • [17] Hülsemann M, Naumann E, Rasch B. Quantification of phase-amplitude couplingin neuronal oscillations: Comparison of phase-locking value, mean vector length,modulation index, and generalized-linear-modeling-cross-frequency-coupling. Front Neurosci 2019;13.
  • [18] Martínez-Cancino R, Heng J, Delorme A, Kreutz-Delgado K, et al. Measuring transient phase-amplitude coupling using local mutual information. NeuroImage2019;185:361-78.
  • [19] Duin RPW. Classifiers in almost empty spaces. In: Proceedings 15th International Conference on Pattern Recognition. ICPR-2000. IEEE Comput. Soc; 2000,http://dx.doi.org/10.1109/icpr.2000.906006, ICPR-00.
  • [20] Ortiz A, Martinez-Murcia F, Luque J, Giménez A, et al. Dyslexia diagnosis by EEG temporal and spectral descriptors: An anomaly detection approach. Int JNeural Syst 2020;30:2050029.
  • [21] Wang G, Teng C, Li K, Zhang Z, Yan X. The removal of EOG artifacts from EEG signals using independent component analysis and multivariate empirical mode decomposition. IEEE J Biomed Health Inf 2016;20:1301-8.
  • [22] Biel A, Minarik T, Sauseng P. EEG cross-frequency phase synchronization as an index of memory matching in visual search. NeuroImage 2021;235:117971.
  • [23] Jiang X, Bian G, Tian Z. Removal of artifacts from EEG signals: A review. Sensors2019;19:987.
  • [24] Li R, Yang D, Fang F, Hong K, et al. Concurrent fNIRS and EEG for brain function investigation: A systematic, methodology-focused review. Sensors 2022;22:5865.
  • [25] Palva J, Palva S, Kaila K. Phase synchrony among neuronal oscillations in thehuman cortex. J Neurosci 2005;25:3962-72.
  • [26] Scheffer-Teixeira R, Tort A. On cross-frequency phase-phase coupling between theta and gamma oscillations in the hippocampus. ELife 2016;5.
  • [27] Rosenblum M, Pikovsky A, Kurths J. Phase synchronization of chaotic oscillators.Phys Rev Lett 1996;76:1804-7.
  • [28] Stam C, Nolte G, Daffertshofer A. Phase lag index: Assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Hum Brain Map 2007;28:1178-93.
  • [29] Belluscio M, Mizuseki K, Schmidt R, Kempter R, Buzsáki G. Cross-frequency phase-phase coupling between theta and Gamma oscillations in the hippocampus. J Neurosci 2012;32:423-35.
  • [30] Dvorak D, Fenton A. Toward a proper estimation of phase-amplitude couplingin neural oscillations. J Neurosci Methods 2014;225:42-56.
  • [31] Liu C, Chen W, Zhang T. Wavelet-Hilbert transform based bidirectional least squares grey transform and modified binary grey wolf optimization for the identification of epileptic EEGs. Biocybern Biomed Eng 2023;43:442-62.
  • [32] Bashivan P, Rish I, Yeasin M, Codella N. Learning representations from EEG with deep recurrent-convolutional neural networks. 2015.
  • [33] Alfeld P. A trivariate clough - tocher scheme for tetrahedral data. Comput Aided Geom Design 1984;1:169-81.
  • [34] Kimppa L, Shtyrov Y, Partanen E, Kujala T. Impaired neural mechanism for online novel word acquisition in dyslexic children. Sci Rep 2018;8.
  • [35] Thiede A, Glerean E, Kujala T, Parkkonen L. Atypical MEG inter-subject cor-relation during listening to continuous natural speech in dyslexia. NeuroImage 2020;216:116799.
  • [36] Attaheri A, Choisdealbha A, Rocha S, Brusini P, et al. Infant low-frequency EEG cortical power, cortical tracking and phase-amplitude coupling predicts language a year later. Cold Spring Harbor Laboratory; 2022.
  • [37] Majkowski A, Oskwarek Ł, Kołodziej M, Rak R. An attempt to localize brain electrical activity sources using EEG with limited number of electrodes. Biocybern Biomed Eng 2016;36:686-96.
  • [38] Pizer S, Amburn E, Austin J, Cromartie R, et al. Adaptive histogram equalization and its variations. Comput Vis Graph Image Process 1987;39:355-68.
  • [39] Yang C. Image enhancement by modified contrast-stretching manipulation. OptLaser Technol 2006;38:196-201.
  • [40] Chaple G, Daruwala R, Gofane M. Comparisions of Robert, Prewitt, Sobel operator based edge detection methods for real time uses on FPGA. In: 2015 international conference on technologies for sustainable development. 2015.
  • [41] Li R, Perneczky R, Yakushev I, Förster S, et al. Gaussian mixture models and model selection for [18F] fluorodeoxyglucose positron emission tomography classification in Alzheimer’s disease. PLoS One 2015;10:e0122731.
  • [42] Derntl A, Plant C. Clustering techniques for neuroimaging applications. WIREs Data Min Knowl Discov 2015;6:22-36.
  • [43] Churchill N, Madsen K, Mørup M. The functional segregation and integration model: Mixture model representations of consistent and variable group-level connectivity in fMRI. Neural Comput 2016;28:2250-90.
  • [44] Schwarz G, et al. Estimating the dimension of a model. Ann Statist 1978;6:461-4.
  • [45] Akaike H. A new look at the statistical model identification. IEEE Trans Autom Control 1974;19:716-23.
  • [46] Castillo-Barnes D, Martinez-Murcia F, Ramírez J, Górriz J, Salas-Gonzalez D.Expectation-maximization algorithm for finite mixture of𝛼-stable distributions. Neurocomputing 2020;413:210-6.
  • [47] Chen T, Guestrin C. XGBoost: A scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. 2016.
  • [48] Faraggi D, Reiser B. Estimation of the area under the ROC curve. Stat Med 2002;21:3093-106.
  • [49] Brodersen K, Ong C, Stephan K, Buhmann J. The balanced accuracy andits posterior distribution. In: 2010 20th international conference on pattern recognition. 2010.
  • [50] Fujii M, Maesawa S, Ishiai S, Iwami K, et al. Neural basis of language: An overview of an evolving model. Neurol Medico-Chirurgica 2016;56:379-86.
  • [51] Górriz J, Illán I, Marquina A, Arco J, et al. Computational approaches to explainable artificial intelligence: Advances in theory, applications and trends. Inform Fus 2023;101945.
  • [52] Canolty R, Knight R. The functional role of cross-frequency coupling. Trends in Cognitive Sciences 2010;14:506-15.
  • [53] Aru J, Aru J, Priesemann V, Wibral M, et al. Untangling cross-frequency coupling in neuroscience. Curr Opin Neurobiol 2015;31:51-61.
  • [54] Gialluisi A, Andlauer T, Mirza-Schreiber N, Moll K, et al. Genome-wide association study reveals new insights into the heritability and genetic correlates of developmental dyslexia. Mol Psychiatry 2020;26:3004-17.
  • [55] Goswami U. A temporal sampling framework for developmental dyslexia. Trendsin Cognitive Sciences 2011;15:3-10.
  • [56] Giraud A, Ramus F. Neurogenetics and auditory processing in developmental dyslexia. Curr Opin Neurobiol 2013;23:37-42.
  • [57] Arns M, Peters S, Breteler R, Verhoeven L. Different brain activation patterns in dyslexic children: Evidence from EEG power and coherence patterns for the double-deficit theory of dyslexia. J Integr Neurosci 2007;6:175-90.
  • [58] Di Liberto G, Peter V, Kalashnikova M, Goswami U, et al. Atypical cortical entrainment to speech in the right hemisphere underpins phonemic deficits in dyslexia. NeuroImage 2018;175:70-9.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-70b7ce87-a1cf-4b0d-8aad-1bfcf6f1f572
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.