PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Shear wave velocity structure beneath the eastern Indian Ocean from Rayleigh wave dispersion measurements

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Eastern Indian Ocean is a tectonically and geodynamically active region that has experienced deformations due to rifting, uplifting, and plume activity. The earlier Rayleigh wave studies in the East Indian Ocean were mainly focused on the structure of the Bay of Bengal, Ninety East Ridge, and Broken Ridge. The structure of other region of the East Indian Ocean is not much explored. In the present study, Rayleigh wave dispersion analysis is performed to observe the signatures of upper mantle deformation in terms of shear wave velocity of the East Indian Ocean using global search method. The fundamental mode Rayleigh wave group velocities are estimated between 15 and 100 s using the multiple filter technique. The group velocities of the raypaths that traverse the same region are clustered (E1–E8) to get an average dispersion curve. Using a genetic algorithm, each cluster's group velocities are inverted for shear velocity structure. The observed dispersion curve of E6, E7, and E8 indicates the lower group velocities between 35 and 100 s relative to E1, E2, E3, E4, and E5, with an average variation of about 0.07–0.18 km/s. The crustal thickness obtained in the study region is ~ 26 km and is due to the increased thickness of the lower crust (9.1–12.4 km) having Vs 3.95–4.04 km/s. The theoretical Vs have been calculated for serpentinite rock at uppermost lithospheric conditions and found to be similar to the Vs of the lower crust in the present study. Hence, it is assumed that unusual crustal thickness is due to the progressive development of the upper lithosphere formation (Ultramafic rock) into material (serpentinite rock) with crustal-like shear velocity or moderately lower than sub-Moho shears velocity. The undeformed lithosphere is evidenced by the high-velocity (Vs 4.62–4.77 km/s) layer beneath the Moho, whose thickness ranges from 41.3 to 51.6 km. The high-velocity lithosphere is followed by a low-velocity zone that extends up to 160 km; however, the variation in Vs (4.57–4.31 km/s) indicates that the low-velocity zone is deformed.
Czasopismo
Rocznik
Strony
1187--1201
Opis fizyczny
Bibliogr. 74 poz., rys., tab.
Twórcy
  • Department of Geophysics, College of Science and Technology, Andhra University, Visakhapatnam, India
autor
  • Institute of Seismological Research (ISR), Gandhinagar, Gujarat, India
  • Department of Geophysics, College of Science and Technology, Andhra University, Visakhapatnam, India
  • Department of Geophysics, College of Science and Technology, Andhra University, Visakhapatnam, India
Bibliografia
  • 1. Au D, Clowes RM (1984) Shear-wave velocity structure of the oceanic lithosphere from ocean bottom seismometer studies. Geophys J Int 77(1):105–123. https://doi.org/10.1111/j.1365-246X.1984.tb01927.x
  • 2. Basu AR, Weaver KL, Sengupta S (2001) December. A plume head and tail in the Bengal basin and Bay of Bengal: Rajmahal and Sylhet Traps with surrounding alkalic volcanism and the Ninety East Ridge. In AGU Fall Meeting Abstracts 2001:V12A-0950. https://ui.adsabs.harvard.edu/abs/2001AGUFM.V12A0950B
  • 3. Bhattacharya SN (1976) Extension of the Thomson—Haskell method to non-homogeneous spherical layers. Geophys J Int 47(3):411–444. https://doi.org/10.1111/j.1365-246X.1976.tb07095.x
  • 4. Bhattacharya SN (1983) Higher order accuracy in multiple filter technique. Bull Seismol Soc Am 73(5):1395–1406
  • 5. Bhattacharya SN (2009) Computation of surface-wave velocities in a nongravitating elastic spherical Earth using an exact flattening transformation. Bull Seismol Soc Am 99(6):3525–3528
  • 6. Bowin C (1973) Origin of the Ninety East Ridge from studies near the equator. J Geophys Res 78(26):6029–6043. https://doi.org/10.1029/JB078i026p06029
  • 7. Brocher TM (2005) Empirical relations between elastic wavespeeds and density in the Earth’s crust. Bull Seismol Soc Am 95(6):2081–2092
  • 8. Brune JN, Singh DD (1986) Continent-like crustal thickness beneath the Bay of Bengal sediments. Bull Seismol Soc Am 76(1):191–203
  • 9. Chatterjee S, Goswami A, Scotese CR (2013) The longest voyage: tectonic, magmatic, and paleoclimatic evolution of the Indian plate during its northward flight from Gondwana to Asia. Gondwana Res 23(1):238–267. https://doi.org/10.1016/j.gr.2012.07.001
  • 10. Chen X (1993) A systematic and efficient method of computing normal modes for multilayered half-space. Geophys J Int 115(2):391–409. https://doi.org/10.1111/j.1365-246X.1993.tb01194.x
  • 11. Christensen NI (1966) Elasticity of ultrabasic rocks. J Geophys Res 71(24):5921–5931. https://doi.org/10.1029/JZ071i024p05921
  • 12. Coudurier-Curveur A, Karakaş Ç, Singh S et al (2020) Is there a nascent plate boundary in the northern Indian Ocean? Geophys Res Lett 47(7):e2020GL087362. https://doi.org/10.1029/2020GL087362
  • 13. Delescluse M, Montési LGJ, Chamot Rooke N (2008) Fault reactivation and selective abandonment in the oceanic lithosphere. Geophys Res Lett. https://doi.org/10.1029/2008GL035066
  • 14. Dewandel B, Boudier F, Kern H, Warsi W, Mainprice D (2003) Seismic wave velocity and anisotropy of serpentinized peridotite in the Oman ophiolite. Tectonophysics 370(1–4):77–94. https://doi.org/10.1016/S0040-1951(03)00178-1
  • 15. Dziewonski A, Bloch S, Landisman M (1969) A technique for the analysis of transient seismic signals. Bull Seismol Soc Am 59(1):427–444. https://doi.org/10.1785/BSSA0590010427
  • 16. Ekström G (2011) A global model of Love and Rayleigh Surface wave dispersion and anisotropy, 25–250 s. Geophys J Int 187(3):1668–1686. https://doi.org/10.1111/j.1365-246X.2011.05225.x
  • 17. Fang H, Van Der Hilst RD, Maarten V, Kothari K, Gupta S, Dokmanić I (2020) Parsimonious seismic tomography with Poisson Voronoi projections: methodology and validation. Seismol Res Lett 91(1):343–355
  • 18. Fletcher JB, Erdem J (2017) Shear-wave velocity model from Rayleigh wave group velocities centered on the Sacramento/San Joaquin Delta. Pure Appl Geophys 174(10):3825–3839. https://doi.org/10.1007/s00024-017-1587-x
  • 19. Francis TJ, Raitt RW (1967) Seismic refraction measurements in the southern Indian Ocean. J Geophys Res 72(12):3015–3304. https://doi.org/10.1029/JZ072i012p03015
  • 20. Hananto N, Boudarine A, Carton H et al (2018) Evidence of pervasive trans-tensional deformation in the northwestern Wharton Basin in the 2012 earthquakes rupture area. Earth Planet Sci Lett 502:174–186. https://doi.org/10.1016/j.epsl.2018.09.007
  • 21. Herrmann RB (1973) Some aspects of band-pass filtering of Surface waves. Bull Seismol Soc Am 63(2):663–671. https://doi.org/10.1785/BSSA0630020663
  • 22. Herrmann RB, Ammon CJ (2002) Computer programs in seismology: surface waves, receiver functions and crustal structure. St. Louis University, St. Louis, MO
  • 23. Husen S, Kissling E, Deichmann N, Wiemer S, Giardini D, Baer M (2003) Probabilistic earthquake location in complex three-dimensional velocity models: application to Switzerland. J Geophys Res. https://doi.org/10.1029/2002JB001778
  • 24. Jacob J, Dyment J, Yatheesh V (2014) Revisiting the structure, age, and evolution of the Wharton Basin to better understand subduction under Indonesia. J Geophys Res 119(1):169–190. https://doi.org/10.1002/2013JB010285
  • 25. Jöns N, Bach W (2016) Serpentinization. In: Harff J, Meschede M, Petersen S, Thiede J (eds) Encyclopedia of marine geosciences. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6238-1_119
  • 26. Karner GD, Driscoll NW, Peirce J (1991) Gravity and magnetic signature of broken ridge, southeast Indian Ocean. In: Proceedings of the Ocean Drilling Program, Scientific Results , vol 121, pp 681–695
  • 27. Kissling E (1995) Velest User’s Guide. Internal Report. Institute of Geophysics, ETH Zurich, p 26
  • 28. Krishna KS, Abraham H, Sager WW et al (2012) Tectonics of the Ninety East Ridge derived from spreading records in adjacent oceanic basins and age constraints of the ridge. J Geophys Res 117:B04101. https://doi.org/10.1029/2011JB008805
  • 29. Kumar A, Mukhopadhyay S, Kumar N, Baidya PR (2018) Lateral variation in crustal and mantle structure in Bay of Bengal based on surface wave data. J Geodyn 113:32–42. https://doi.org/10.1016/j.jog.2017.11.006
  • 30. Lamadrid HM, Rimstidt JD, Schwarzenbach EM et al (2017) Effect of water activity on rates of serpentinization of olivine. Nat Commun 8(1):1–9. https://doi.org/10.1038/ncomms16107
  • 31. Lévěque JJ, Debayle E, Maupin V (1998) Anisotropy in the Indian Ocean upper mantle from Rayleigh-and Love-waveform inversion. Geophys J Int 133(3):529–540. https://doi.org/10.1046/j.1365-246X.1998.00504.x
  • 32. Levshin A, Ratnikova L, Berger J (1992) Peculiarities of surface-wave propagation across central Eurasia. Bull Seismol Soc Am 82(6):2464–2493. https://doi.org/10.1785/BSSA0820062464
  • 33. Luco JE, Apsel RJ (1983) On the Green’s functions for a layered half-space Part I. Bull Seismol Soc Am 73(4):909–929. https://doi.org/10.1785/BSSA0730040909
  • 34. Luo Y, Lin J, Zhou, Z (2018) Evolution of the Eastern Indian Ocean basin since 120 Ma: influence of Kerguelen hotspot in oceanic crust accretion. In: AGU Fall Meeting Abstracts 2018:V23L-0214. https://ui.adsabs.harvard.edu/abs/2018AGUFM.V23L0214L
  • 35. Maneno R, Santosa BJ (2019) 3d seismic velocity structure imaging beneath Flores region using local earthquake tomography. J Phys Conf Ser 1245(1):012012
  • 36. Manglik A (2002) Shear wave velocity structure of the upper mantle under the NW Indian Ocean. J Geodyn 34(5):615–625. https://doi.org/10.1016/S0264-3707(02)00033-9
  • 37. Matrullo E, De Matteis R, Satriano C, Amoroso O, Zollo A (2013) An improved 1-D seismic velocity model for seismological studies in the Campania–Lucania region (Southern Italy). Geophys J Int 195(1):460–473
  • 38. Mazzullo A, Stutzmann E, Montagner JP et al (2017) Anisotropic tomography around La Réunion island from Rayleigh waves. J Geophys Res 122(11):9132–9148. https://doi.org/10.1002/2017JB014354
  • 39. Miller BL, Goldberg DE (1995) Genetic algorithms, tournament selection, and the effects of noise. Complex Syst 9(3):193–212
  • 40. Mitra S, Priestley K, Acton C, Gaur VK (2011) Anomalous Surface wave dispersion and the enigma of „continental-like” structure for the Bay of Bengal. J Asian Earth Sci 42(6):1243–1255. https://doi.org/10.1016/j.jseaes.2011.07.008
  • 41. Molnar P, Tapponnier P (1975) Cenozoic tectonics of Asia: effects of a continental collision. Science 189(4201):419–426. https://doi.org/10.1126/science.189.4201.419
  • 42. Moncayo E, Tchegliakova N, Montes L (2012) Pre-stack seismic inversion based on a genetic algorithm: a case from the Llanos Basin (Colombia) in the absence of well information. CT&F Cienc Tecnol Futuro 4(5):5–20
  • 43. Montagner JP, Jobert N (1988) Vectorial tomography—ii. Application to the Indian Ocean. Geophys J Int 94(2):309–344. https://doi.org/10.1111/j.1365-246X.1988.tb05904.x
  • 44. Mutter JC, Hegarty KA, Cande SC, Weissel JK (1985) Breakup between Australia and Antarctica: a brief review in the light of new data. Tectonophysics 114(1–4):255–279. https://doi.org/10.1016/0040-1951(85)90016-2
  • 45. O’Hanley DS, Chernosky JV, Wicks FJ (1989) The stability of lizardite and chrysotile. Can Mineral 27(3):483–493
  • 46. O’Neill C, Müller D, Steinberger B (2005) On the uncertainties in hot spot reconstructions and the significance of moving hot spot reference frames. Geochem Geophys Geosyst 6(4):Q04003. https://doi.org/10.1029/2004GC000784
  • 47. Panza GF, Pontevivo A (2004) The Calabrian Arc: a detailed structural model of the lithosphere-asthenosphere system. Rend Accad Naz Sci XL Mem Sci Fis Natur 28:51–88
  • 48. Parker PB (1999) Genetic algorithms and their use in geophysical problems. University of California, Berkeley
  • 49. Pasyanos ME, Masters TG, Laske G, Ma Z (2014) LITHO1.0: an updated crust and lithospheric model of the Earth. J Geophys Res 119(3):2153–2173. https://doi.org/10.1002/2013JB010626
  • 50. Phinney RA (1961) Leaking modes in the crustal waveguide: 1. The oceanic PL wave. J Geophys Res 66(5):1445–1469. https://doi.org/10.1029/JZ066i005p01445
  • 51. Pollitz FF, Stein RS, Sevilgen V, Bürgmann R (2012) The 11 April 2012 east Indian Ocean earthquake triggered large aftershocks worldwide. Nature 490(7419):250–253. https://doi.org/10.1038/nature11504
  • 52. Preiner M, Xavier JC, Sousa FL et al (2018) Serpentinization: connecting geochemistry, ancient metabolism and industrial hydrogenation. Life 8(4):41. https://doi.org/10.3390/life8040041
  • 53. Qin Y, Singh SC (2015) Seismic evidence of a two-layer lithospheric deformation in the Indian Ocean. Nat Commun 6(1):1–12. https://doi.org/10.1038/ncomms9298
  • 54. Quintero R, Kissling E (2001) An improved P-wave velocity reference model for Costa Rica. Geofís Int 40(1):3–19
  • 55. Ramillien G (2001) Genetic algorithms for geophysical parameter inversion from altimeter data. Geophys J Int 147(2):393–402. https://doi.org/10.1046/j.0956-540x.2001.01543.x
  • 56. Rao GS, Radhakrishna M, Sreejith KM et al (2016) Lithosphere structure and upper mantle characteristics below the Bay of Bengal. Geophys J Int 206(1):675–695. https://doi.org/10.1093/gji/ggw162
  • 57. Rathnayake S, Tenzer R, Eshagh M, Pitoňák M (2019) Gravity maps of the lithospheric structure beneath the Indian Ocean. Surv Geophys 40(5):1055–1093. https://doi.org/10.1007/s10712-019-09564-6
  • 58. Reeves C, De Wit M (2000) Making ends meet in Gondwana: retracing the transforms of the Indian Ocean and reconnecting Continental shear zones. Terra Nova 12(6):272–280. https://doi.org/10.1046/j.1365-3121.2000.00309.x
  • 59. Sambridge M (1999) Geophysical inversion with a neighbourhood algorithm—I. Searching a parameter space. Geophys J Int 138(2):479–494. https://doi.org/10.1046/j.1365-246X.1999.00876.x
  • 60. Sambridge M, Drijkoningen G (1992) Genetic algorithms in seismic waveform inversion. Geophys J Int 109(2):323–342. https://doi.org/10.1111/j.1365-246X.1992.tb00100.x
  • 61. Scotese CR, Gahagan LM, Larson RL (1988) Plate tectonic reconstructions of the Cretaceous and Cenozoic ocean basins. Tectonophysics 155(1–4):27–48. https://doi.org/10.1016/0040-1951(88)90259-4
  • 62. Sen MK, Stoffa PL (1992) Rapid sampling of model space using genetic algorithms: examples from seismic waveform inversion. Geophys J Int 108(1):281–292. https://doi.org/10.1111/j.1365-246X.1992.tb00857.x
  • 63. Sharma J, Kumar MR, Roy KS, Roy PNS (2018) Seismic imprints of plume lithosphere interaction beneath the northwestern Deccan Volcanic Province. J Geophys Res 123(12):10–831. https://doi.org/10.1029/2018JB015947
  • 64. Sharma J, Kumar MR, Roy KS et al (2021) Low-velocity zones and negative radial anisotropy beneath the plume perturbed Northwestern Deccan Volcanic Province. J Geophys Res 126(2):e2020JB020295. https://doi.org/10.1029/2020JB020295
  • 65. Singh DD (1988) Quasi-continental oceanic structure beneath the Arabian Fan sediments from observed surface-wave dispersion studies. Bull Seismol Soc Am 78(4):1510–1521. https://doi.org/10.1785/BSSA0780041510
  • 66. Singh DD (2005) Rayleigh-wave group-velocity studies beneath the Indian Ocean. Bull Seismol Soc Am 95(2):502–511. https://doi.org/10.1785/0120000296
  • 67. Singh SC, Carton H, Chauhan AS et al (2011) Extremely thin crust in the Indian Ocean possibly resulting from Plume—Ridge Interaction. Geophys J Int 184(1):29–42. https://doi.org/10.1111/j.1365-246X.2010.04823.x
  • 68. Souriau A (1981) The upper mantle beneath Ninetyeast Ridge and Broken Ridge, Indian Ocean, from surface waves. Geophys J Int 67(2):359–374. https://doi.org/10.1111/j.1365-246X.1981.tb02755.x
  • 69. Storey M, Saunders AD, Tarney J et al (1989) Contamination of Indian Ocean asthenosphere by the Kerguelen-Heard mantle plume. Nature 338(6216):574–576. https://doi.org/10.1038/338574a0
  • 70. Thurber C, Ritsema J (2007) Theory and observations-seismic tomography and inverse methods. Seismology and the Structure of the Earth 1:323–360
  • 71. Tselentis GA, Serpetsidaki A, Martakis N, Sokos E, Paraskevopoulos P, Kapotas S (2007) Local high-resolution passive seismic tomography and Kohonen neural networks—application at the Rio-Antirio Strait, central Greece. Geophysics 72(4):B93–B106
  • 72. Van Orman J, Cochran JR, Weissel JK, Jestin F (1995) Distribution of shortening between the Indian and Australian plates in the central Indian Ocean. Earth Planet Sci Lett 133(1–2):35–46. https://doi.org/10.1016/0012-821X(95)00061-G
  • 73. Wamba MD, Montagner JP, Romanowicz B, Barruol G (2021) Multi-mode waveform tomography of the Indian Ocean Upper and mid-mantle around the réunion hotspot. J Geophys Res 126(8):e2020JB021490. https://doi.org/10.1029/2020JB021490
  • 74. Yogi IBS, Widodo (2017) Time domain electromagnetic 1D inversion using genetic algorithm and particle swarm optimization. AIP Conf Proc 1861:030014. https://doi.org/10.1063/1.4990901
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-70b119ba-328d-4f61-898d-4874d0c33c52
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.