PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of the cathode material on the efficiency of the electro-Fenton process to remove pefloxacin. Kinetics and oxidation products

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effect of the electro-Fenton process depends on the ability of the cathode material to produce H2O2, a primary oxidizing agent that is responsible for destroying organic pollutants. The study aimed at the impact of various cathode materials, including carbon felt, carbon graphite, and stainless steel, as well as current density on the electrochemical oxidation of pefloxacin (PEF) in water. The electro- -Fenton technique was applied for the first time on the PEF employing various cathodes with a platinum anode. HPLC and LC-(MS-MS) studies have been utilized to determine intermediate compounds. Using ion chromatography, inorganic ions released in the solution as a final stage of the mineralizing process were determined. Finally, we assessed the viability of fusing the biological process with the electro-Fenton one. As a result, PEF-contaminated water can be treated effectively and cheaply.
Rocznik
Strony
79--94
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • Chemistry Department, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
  • Departmen of Chemistry, College of Science, Princes Nourah Bint Abdulrahman Univeristy, Riyadh 11671, Saudi Arabia
  • Department of Chemistry, Faculty of Education, Hodeidah University, Hodeida, Yemen
Bibliografia
  • [1] SHUEAI YAHYA M., EL KARBANE M., OTURAN N., EL KACEMI K., OTURAN M.A., Mineralization of the antibiotic levofloxacin in aqueous medium by electro-Fenton process. Kinetics and intermediate products analysis, Environ. Technol., 2016, 37, 1276–1287. DOI: 10.1080/09593330.2015.1111427.
  • [2] PHAM T., ZIORA Z.M., BLASKOVICH M., Quinolone antibiotics, Med. Chem. Commun., 2019, 10, 1719 –1739. DOI: 10.1039/C9MD00120D.
  • [3] TANG K., ZHAO H., Quinolone antibiotics: Resistance and therapy, Infect. Drug Res., 2023, 16, 811–820. DOI: 10.2147/IDR.S401663.
  • [4] BAI H., ZHANG Q., ZHOU X., CHEN J., CHEN Z., LIU Z., YAN J., WANG J., Removal of fluoroquinolone antibiotics by adsorption of dopamine-modified bio-char aerogel, Korean J. Chem. Eng., 2023, 40, 811–820. DOI: 10.1007/s11814-022-1263-4.
  • [5] SHUEAI YAHYA M., BEQQUAL N., EL KARBANE M., CHAKCHAK H., WARD I., ZARROUK A., KAICHOUH G., Optimization of the electro-Fenton process for the elimination of oxytetracycline antibiotic from water. Degradation/mineralization kinetics, Anal. Bioanal. Electrochem., 2023, 15, 251–263. DOI: 10.22034 /abec.2023.704565.
  • [6] MATHUR P., SANYAL D., DEY P., The optimization of enzymatic oxidation of levofloxacin, a fluoroquinolone antibiotic for wastewater treatment, Biodegrad., 2021, 32, 467–485. DOI: 10.1007/s10532-021-09946-x.
  • [7] SHUEAI YAHYA M., BEQQAL N., GUESSOUS A., ARHOUTANE M.R., EL KACEMI K., Degradation and mineralization of moxifloxacin antibiotic in aqueous medium by electro-Fenton process. Kinetic assessment and oxidation products, Cogent. Chem., 2017, 3, 1290021. DOI: 10.1080/23312009. 2017.1290021.
  • [8] VILAR V.J.P., AMORIM C.C., BRILLAS E., PUMA G.L., MALATO S., DIONYSIOU D.D., AOPs. Recent advances to overcome barriers in the treatment of water, wastewater and air, Environ. Sci. Poll. Res., 2017, 7, 5987–5990. DOI: 10.1007/s11356-017-8425-7.
  • [9] ARHOUTANE M.R., KAICHOUH G., SHUEAI YAHYA M., EL KARBANE M., CHAKCHAK H., EL KACEMI K., Elimination of gatifloxacin from water. Treatment by electro-Fenton process and highlighting of a biological post-treatment, Mediterr. J. Chem., 2019, 8, 308–319. DOI: 10.1080/23312009.2017.1290021.
  • [10] BRILLAS E., MARTINEZ-HUITLE C.A., Decontamination of wastewater containing synthetic organic dyes by electrochemical methods. An updated review, Appl. Catal. B: Environ., 2015, 166–167, 603–643. DOI: 10.1016/j.apcatb.2014.11.016.
  • [11] YONAR T., KESTIOGLU K., AZBAR N., Treatability studies on domestic wastewater using UV/H2O2 process, Appl. Catal. B: Environ., 2006, 67, 223–228. DOI: 10.1016/j.apcatb.2006.04.022.
  • [12] ARHOUTANE M.R., SHUEAI YAHYA M., EL KARBANE M., EL KACEMI K., Oxidative degradation of gentamicin present in water by an electro-Fenton process and biodegradability improvement, Open Chem., 2019, 17, 1017–1025. DOI: 10.1515/chem--0110.
  • [13] BRILLAS E., SIRÉS I., OTURAN M.A., Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry, Chem. Rev., 2009, 109, 6570–6631. DOI: 10.1021/cr900136g.
  • [14] SIRÉS I., BRILLAS E., OTURAN M.A., RODRIGO M.A., PANIZZA M., Electrochemical advanced oxidation processes. Today and tomorrow, Environ. Sci. Pollut., 2014, 21, 8336–8367. DOI: 10.1023/A: 1003994428571.
  • [15] OTURAN M.A., AARON J.J., Advanced oxidation processes in water/wastewater treatment: principles and applications, Crit. Rev. Environ. Sci. Technol., 2014, 44, 2577–2641. DOI: 10.1080/10643389. 2013.829765.
  • [16] BRILLAS E., SIRÉS I., OTURAN M.A., Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry, Chem. Rev., 2009, 109, 6570–6631. DOI: 10.1021/cr900136g.
  • [17] ARHOUTANE M.R, KAICHOUH G., SHUEAI YAHYA M., EL KARBANE M., CHAKCHAK H., EL KACEMI K., Elimination of gatifloxacin from water. Treatment by electro-Fenton process and highlighting of a biological post-treatment, Mediterr. J. Chem., 2019, 8 (4), 308–319. DOI: 10.13171/mjc841906066mra.
  • [18] OTURAN M.A., EDELAHI M.C., OTURAN N., EL KACEMI K., AARON J.J., Kinetics of oxidative degradation/mineralization pathways of the phenylurea herbicides Diurion, Monuron and Fenuron in water during application of the electro-Fenton process, Appl. Catal. B: Environ., 2010, 97, 82–89. DOI: 10.1016/j.apcatb.2010.03.026.
  • [19] WANG C.T., HU J.L., CHOU W.L., KUO Y.M., Removal of color from real dyeing wastewater by electro- -Fenton technology using a three-dimensional graphite cathode, J. Hazard. Mater., 2008, 152, 601–606. DOI: 10.1016/j.jhazmat.2007.07.023.
  • [20] HU X., WANG B., Removal of pefloxacin from wastewater by dielectric barrier discharge plasma. Mechanism and degradation pathways, J. Environ. Chem. Eng., 2021, 9, 105–720. DOI: 10.1016 /j.jece.2021.105720.
  • [21] PANIZZA M., OTURAN M.A., Degradation of alizarine red by electro-Fenton process using a graphite- -felt cathode, Electrochim. Acta., 2011, 56, 7084–7087. DOI: 10.1016/j.electacta.2011.05.105.
  • [22] PIMENTEL M., OTURAN N., DEZOTTI M., OTURAN M.A., Phenol degradation by advanced electrochemical oxidation process electro-Fenton using a carbon felt cathode, Appl. Catal. B: Environ., 2008, 83, 140–149. DOI: 10.1016/j.apcatb.2008.02.011.
  • [23] ÖZCAN A., SAHIN Y., KOPARAL A.S., OTURAN M.A., Carbon sponge as a new cathode material for electro-Fenton process. Comparison with carbon felt cathode and application to degradation of synthetic dye Basic Blue 3 in aqueous medium, J. Electroanal. Chem., 2008, 616, 71–78. DOI: 10.1016 /j.jelechem.2008.01.002.
  • [24] OLLER I., MALATO S., SANCHEZ-PEREZ J.A., Combination of advanced oxidation processes and biological treatments for wastewater decontamination, Sci. Total. Environ., 2011, 409, 4141–4166. DOI: 10.1016/j.scitotenv.2010.08.061.
  • [25] ABOUDALLE A., DJELAL H., DOMERGUE L., FOURCADE F., AMRANE A., A novel system coupling an electro-Fenton process and an advanced biological process to remove a pharmaceutical compound, metronidazole, J. Hazard. Mater., 2021, 415, 125–705. DOI: 10.1016/j.jhazmat.2021.125705.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-70a8b391-82c5-4d0a-8f61-311d48aac426
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.