PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

The Effects of Hot Deformation Parameters on the Size of Dynamically Recrystallized Austenite Grains of HSLA Steel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Materials scientists are seeking to produce metals with reduced weight and dimensions while maintaining the appropriate mechanical properties. There are several ways to improve the internal structure of metals, such as the ultrasound used to solidify liquid metal. The homogeneity of the grains and the uniformity of the metal structure affects its mechanical strength. This paper presents the results of investigations into the effects of hot deformation parameters in compression on the austenite grain size in the HSLA (High Strength Low Alloy) steel (0.16% C, 0.037% Nb, 0.004% Ti, 0.0098% N). The axisymmetric compression investigations were performed on cylindrical investigation specimens using a Gleeble 3800 thermomechanical simulator with the strain rate of 1÷15.9 s-1 and strain degree ε = 1.2. Before deformation, the research specimens were austenitized at TA = 1100÷1250 °C. The metallographic observations of the primary austenite grains were conducted with an optical microscope, while the structure of dynamically recrystallized austenite, inherited by martensite, was examined by using a scanning electron microscope.
Twórcy
  • Fundamentals of Technology Faculty, Lublin University of Technology, ul. Nadbystrzycka 38D, 20-618 Lublin, Poland
autor
  • Faculty of Mechanical Eengineering, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • Fundamentals of Technology Faculty, Lublin University of Technology, ul. Nadbystrzycka 38D, 20-618 Lublin, Poland
  • Fundamentals of Technology Faculty, Lublin University of Technology, ul. Nadbystrzycka 38D, 20-618 Lublin, Poland
Bibliografia
  • 1.Adamczyk J., Ozgowicz W., Wusatowski R., Kalinowska-Ozgowicz E., Grzyb R.: Boron treated microalloyed quenched and tempered plates, their structure and properties. Journal of Materials Processing Technology 64, 1997, 1–8.
  • 2.Adamczyk J., Kalinowska-Ozgowicz E., Ozgowicz W., Wusatowski R.: Interaction of carbonitrides V(CN) undissolved in austenite on the structure and mechanical properties of microalloyed V-N steels. Journal of Materials Processing Technology 53, 1995, 23–32.
  • 3.Akhavan B., Ashrafizadeh F., Hassanli A.M.: Influence of retained austenite on the mechanical properties of low carbon martensitic stainless steel castings. ISIJ Int. 2011, 51, 471–475.
  • 4.Anselmo, N., May J.E., Mariano N.A., Nascente P.A.P., Kuri S.E.: Corrosion behavior of supermartensitic stainless steel in aerated and CO2-saturated synthetic seawater. Materials Scienceand EngineeringA 428, 2006, 73–79.
  • 5.Aquino J.M., Rovere C.A.D., Kuri S.E.: Localized corrosion susceptibility of supermartensitic stainless steel inwelded joints. Corrosion 64, 2008, 35–39.
  • 6.Ashrafi, H.; Shamanian, M.; Emadi, R.; Saeidi, N. A novel and simple technique for development of dual phase steels with excellent ductility. Materials Science and EngineeringA 680, 2017, 197–202.
  • 7.Balart M.J., Davis C.L., Strangwood M.: Fracture behavior in medium-carbon Ti-V-N and V-N microalloyed ferritic-pearlitic and bainitic forging steels with enhanced machinability. Materials Science and Engineering A 328, 2002, 48–57.
  • 8.Bojack A., Zhao L., Morris P.F., Sietsma J.: Austenite formation from martensite in a 13Cr6Ni2Mo supermartensitic stainless steel. Metallurgical and Materials Transaction A 47, 2016, 1996–2009.
  • 9.Caminga C., Botta Filho W.J., Silva M.L.N., Button S.T.: Strengthening mechanism of 27MnSiVS6 microalloyed steel deformed by four different forging processes. Procedia Engineering 10, 2011, 512–517.
  • 10.De Sanctis M., Lovicu G., Valentini R., Dimatteo A., Ishak R., Migliaccio U., Montanari R., Pietrangeli E.: Microstructural features affecting tempering behavior of 16Cr–5Ni supermartensitic steel. Metallurgical and Materials Transaction A 46, 2015, 1878–1887.
  • 11.Deleu E., Dhooge A.: Weldability assessment of thick super-martensitic 13Cr stainless steel welds made with matching consumables. Weld. World 49, 2005, 34–44.
  • 12.Della Rovere C.A., Ribeiro C.R., Silva R., Baroni L.F.S., Alcântara N.G., Kuri S.E.: Microstructural and mechanical characterization of radial friction welded supermartensitic stainless steel joints. Materials Science and EngineeringA 586, 2013, 86–92.
  • 13.Escobar J.D., Poplawsky J.D., Faria G.A., Rodriguez J., Oliveira J.P., Salvador C.A.F., Mei P.R., Babu S.S., Ramirez A.J.: Compositional analysis on the reverted austenite and tempered martensite in a Ti-stabilized supermartensitic stainless steel: Segregation, partitioning and carbide precipitation. Materials and Design 140, 2018, 95–105.
  • 14.Garcia-MateoC., LópezB., Rodriguez-IbabeJ.M.: Influence of vanadium on static recrystallization in warm worked microalloyed steels. Scripta Materialia 42, 2000, 137–143.
  • 15.GladmanT.: The physical metallurgy of microalloyed steels. The Institute of Materials, London 1997.
  • 16.Gnapowski S., Tsunekawa Y., Okumiya M., Lenik K.: Change of aluminum alloys structure by sono-solidification, Archives of Foundry Engineering 13, 2013, 39–42.
  • 17.GündüzS., AcarerM.: The effect of heat treatment on high temperature mechanical properties of microalloyed medium carbon steel. Materials and Design27, 2006, 1076–1085.
  • 18.Jahazi M., Eghbali B.: The influence of hot forming conditions on the microstructure and mechanical properties of two microalloyed steels. Journal of Materials Processing Technology 113, 2001, 594–598.
  • 19.Kalashami A.G., Kermanpur A.,Najafizadeh A., Mazaheri Y.: Development of a high strength and ductile Nb-bearing dual phase steel by cold-rolling and intercritical annealing of the ferrite-martensite microstructures. Materials Science and EngineeringA 658, 2016, 355–366.
  • 20.Kalinowska-Ozgowicz E.: Structural and mechanical factors of the strengthening and recrystallization of hot plastic deformation of steels with microadditives, (in Polish), Open\Acces Library vol.20, URLhttp://www.openaccesslibrary.com/index.php?id=97, 2013, 1–246.
  • 21.Kalinowska-Ozgowicz E., Kuziak R., Ozgowicz W., Lenik K.: Kinetics of the precipitation in austenite HSLA steels. Materials and Technologies, 49(5), 2015, 673–679.
  • 22.Kalinowska-Ozgowicz E., Wajda W., Ozgowicz W.: Mathematical modelling and physical simulation of the hot plastic deformation and recrystallization of steel with micro-additives. Materiali in Tehnologije 49, 2015, 69–74.
  • 23.Kuziak R.: Modeling changes in structure and phase transformations occurring in the processes treatment of thermo-plastic steel. Instytut Metalurgii Żelaza (in Polish) Gliwice 2005.
  • 24.Leem D.S., Lee Y.D., Jun J.H., Choi C.S.: Amount of retained austenite at room temperature after reverse transformation of martensite to austenite in an Fe–13%Cr–7%Ni–3%Si martensitic stainless steel. Scripta Materialia 45, 2001, 767–772.
  • 25.Lian Y., Huang J., Zhang J., Zhang, C., Gao W., Zhao C.: Effect of 0.2 and 0.5% Ti on the microstructure and mechanical properties of 13Cr supermartensitic stainless steel. Journal of Materials Engineering and Performance24, 2015, 4253–4259.
  • 26.Lourenco N.J., Jorge A.M., Rollo J.M.A., Balancin O.: Plastic behavior of medium carbon vanadium microalloyed steel at temperatures near g→a transformation. Materials Research3, 2001, 149-146.
  • 27.Ma X., Wang L., Subramanian S.V., Liu C.: Studies on Nb microalloying of 13Cr super martensitic stainless steel. Metallurgical and Materials Transaction A 43, 2012, 4475–4486.
  • 28.Mazaheri Y., Kermanpur A., Najafizadeh A.: Microstructures, mechanical properties, and strain hardening behavior of an ultrahigh strength dual phase steel developed by intercritical annealing of cold-rolled ferrite/martensite. Metallurgical and Materials Transaction A 46, 2015, 3052–3062.
  • 29.Nakagawa H., Miyazaki T.: Effect of retained austenite on the microstructure and mechanical properties of martensitic precipitation hardening stainless steel. Journal of Materials Science 34, 1999, 3901–3908.
  • 30.Opiela M.: Thermomechanical treatment of Ti-Nb-V-B microalloyed steel forgings. Materiali in Tehnologije 48, 2014, 587–591.
  • 31.Opiela M.: Thermodynamic analysis of the precipitation of carbonitrides in microalloyed steels. Materiali in Tehnologije 49, 2015, 395–401.
  • 32.Opiela M., Grajcar A: Microstructure and anisotropy on plastic properties of thermomechanicaly-processed HSLA-type steel plates. Metals 8, 2018, 1–15.
  • 33.Ozgowicz W., Opiela M., Kalinowska-Ozgowicz E.: Metallurgical products of microalloy constructional steels. Journal of Achievements in Materials and Manufacturing Engineering 44, 2011, 7–19.
  • 34.PadmanabhanK.A., SankaranS.: Fatigue behavior of a multiphase medium carbon V-bearing microalloyed steel processed through two thermomechanical routes. Journal of Materials Processing Technology207, 2008, 293-300.
  • 35.Roberts W., Boden H., Ahblo B.: Dynamic recrystallization kinetics, Metal Science 13, 1979, 195–205.
  • 36.Rodrigues C.A.D., Bandeira R.M., Duarte B.B., Tremiliosi-Filho G., Jorge A.M.: Effect of phosphorus content on the mechanical, microstructure and corrosion properties of supermartensitic stainless steel. Materials Science and EngineeringA 650, 2016, 75–83.
  • 37.Rodriguez-Ibabe J.M.: Thin slab direct rolling of microalloyed steels. Trans. Tech., Publications Ltd, Switzerland 2007.
  • 38.Silva, G.F., Tavares S.S.M., Pardal J.M., Silva M.R., de Abreu H.F.G.: Influence of heat treatments on toughness and sensitization of a Ti–alloyed supermartensitic stainless steel. Journal of Materials Science 46, 2011, 7737–7744.
  • 39.Skobir D.A.: High-strength low-alloy (HSLA) steels. Materials and Technology 45, 2011, 295–301.
  • 40.Skubisz P., Sińczak J., Skowronek T., Rumiński M.: Selection of direct cooling conditions for automotive lever made of microalloyed steel. Archives of Civil and Mechanical Engineering 12, 2012, 418-426.
  • 41.Song Y.Y., Li X.Y., Rong L.J., Li Y.Y., Nagai T.: Reversed austenite in 0Cr13Ni4Mo martensitic stainless steels. Materials Chemistry and Physics 143, 2014, 728–734.
  • 42.Spena P.R., Firrao D.: Thermomechanical warm forging of Ti-V, Ti-Nb, and Ti-B microalloyed medium carbon steel. Materials Science and Engineering A 560, 2013, 208–215.
  • 43.Xu L., Wang Ch., Liu G., Bai B.: Hot deformation of medium carbon V-N microalloyed steel. Transactions of Nonferrous Metals Society of China 19, 2009, 1389–1394.
  • 44.Ye D., Li J., Jiang W., Su J., Zhao K.: Effect of Cu addition on microstructure and mechanical properties of 15% Cr super martensitic stainless steel. Materials Design 41, 2012, 16–22.
  • 45.Zepon G., Nascimento A.R.C., Kasama A.H., Nogueira R.P., Kiminami C.S., Botta W.J., Bolfarini C.: Design of wear resistant boron-modified supermartensitic stainless steel by spray forming process. Materials Design 83, 2015, 214–223.
  • 46.ASTM E112-10 Standard Test Methods for Determining Average Grain Size.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-70a17549-7878-472d-bba3-77f314c41f24
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.