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INTRODUCTION

The possibility of full control of the grain size, 
and hence the production of products with a fine 
grain structure are demonstrated by HSLA (High 
Strength Low Alloy) containing micro-additives 
with high affinity with carbon and nitrogen, such 
as Nb, Ti and V. The metallic micro-additives add-
ed to these steels interact with C and N to form 
stable interstitial phases MX (M - Nb, Ti, V; X - N, 
C). The stability of these phases depends mainly 
on their chemical composition, while the temper-
ature of their dissolution can vary widely. In the 
technological process of producing steel products, 
this allows for obtaining various structural effects, 
such as: controlling the austenite grain size at 
high temperature by undissolved particles of pre-
cipitates, changing the kinetics of recrystallization 
and phase changes caused by dissolved elements 

and precipitation, as well as obtaining the effect 
of strengthening by low dispersive discharge tem-
perature. Dispersive particles of interstitial phases 
type MX, such as carbides, nitrides and carboni-
trides, introduced into the micro-additives steel, 
inhibiting the movement of grain boundaries of 
recrystallized austenite, create the possibility of 
producing metallurgical products with high me-
chanical properties [30-33]. The condition for ob-
taining metallurgical products with high mechani-
cal properties from micro-alloy steel is the proper 
selection of plastic forming conditions, adapted 
to the separation process of MX type interstitial 
phases [15, 37]. In microalloyed steels, the effect 
of MX-type phase particles on dynamic recrystal-
lization depends on their size, shape and distribu-
tion in the matrix. If the MX-type phase particles 
are fine and of high dispersion, they stabilize sub-
structure, hinder the formation of recrystallization 
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fronts and their migration and inhibit dynamic re-
covery. As a result, the impact of such particles 
inhibits dynamic recrystallization and may result 
in significant grain refining. In contrast, when the 
second phase particles are precipitated within the 
grain boundaries, they can effectively block their 
migration, that is inhibit dynamic recrystallization 
without significantly affecting dynamic recovery. 
For large second phase particles that interact with 
dislocations as stress concentrators and are also 
privileged points for heterogeneous formation of 
recrystallization nuclei, the acceleration of dy-
namic recrystallization is observed [20-23, 35].

Hot deformation parameters have a decisive 
impact on the formation of secondary phases of 
microadditions that determine the course of dy-
namic recrystallization and structure refinement in 
HSLA steels [1, 2, 39]. Many strategies have been 
adopted to improve the ductility and impact prop-
erties of these ultrahigh-strength DP (Dual Phase) 
steels, such as refining of microstructure, alloying, 
or designing new processing methods [6, 19, 28]. 
HSLA steel has better mechanical properties, in-
cluding high strength, and better corrosion resis-
tance than carbon steel [4, 11, 12, 45]. Mechani-
cal properties are usually determined by chemical 
composition and thermo mechanical treatments 
[10, 13, 25, 27, 36, 38, 44]. Nevertheless, final me-
chanical properties are observed to depend on the 
fraction of reverted austenite, which is very sensi-
tive to heat treatment [3, 8, 16, 24, 29, 41].

Meeting the growing requirements of steel 
customers related to the increase in strength 
while maintaining the required ductility is seen 
in the full use of micro-additives. In the case of 
HSLA micro-alloy steels, the increase in strength 
is associated with grain grinding and precipitation 
hardening by Nb, Ti and V carbide, nitride and 
carbonitride nitrides. The analysis of the literature 
indicates that the conducted research in a signifi-
cant number of cases focus on the introduction of 
micro-additive V [ 14, 17, 26, 34, 40] and Ti and 
V [7, 9, 18, 42, 43]. Much less work concerns the 
overall introduction to steel to Nb, Ti and V steel. 
The purpose of this work is to investigate the 
impact of temperature and strain rate on the size 

of austenite grains of dynamically recrystallized 
HSLA steel with Nb, Ti and V micro-additives.

MATERIALS AND METHODS 

The investigations were carried out on the 
HSLA steel grade S355NL from the industrial 
process with the chemical composition as pre-
sented in Table 1.

The plastometric investigations with the axi-
symmetric hot compression method were carried 
out for HSLA steel to determine the effect of the 
austenitizing temperature and the strain temper-
ature, as well as the degree and rate of the σ-ε 
flow curves, which represent thermally activated 
processes that take place in the material being 
deformed and determine the change in structure, 
in particular with regard to the size of austenite 
grain. The axisymmetric hot compression inves-
tigations were carried out on cylindrical research 
specimens of 7 mm in diameter and 8.4 mm in 
length using a Gleeble 3800 simulator. 

The research specimens were heated in the 
simulator by the resistance method, in an argon at-
mosphere. To reduce the coefficient of friction, the 
investigation specimens’ faces were coated with 
graphite and tantalum foil. Continuous compres-
sion experiments were carried out to ε = 1.2 on 
research specimens austenitized in a temperature 
range of 1100÷1250°C and deformed in a tempera-
ture range of 800÷1250°C at a strain rate of ap-
proximately 1.0s-1 , 3.6s-1, 9.55s-1 and 15.9s-1. Im-
mediately after the compression investigation, the 
research specimens were cooled in water to freeze 
the effects of hot plastic deformation. The metallo-
graphic microscopic examinations were carried out 
on longitudinal microsections of hot compressed 
and water- or air-cooled research specimens. 

The structure observations were carried out 
with an Olympus GX71 microscope at magnifica-
tions of up to approximately 2000x and optionally 
in polarised light. In order to reveal the primary 
austenite grains, etching with saturated aqueous 
solution of picric acid at 70°C was used. In other 
cases, the microsections were etched with a reagent 

Table 1. Chemical composition of HSLA steel under investigation

Element concentrations, wt %

C Mn Si P S Ti Nb V Al N

0.16 1.48 0.29 0.030 0.017 0.004 0.037 0.002 0.010 0.0098
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(nital). The measurement of the average diameter 
of the primary austenite grain was performed ac-
cording to norm ASTM E112-10 [46] by count-
ing the number of intersections on at least seven 
representative fields of observation. The results of 
these measurements were developed statistically 
for a confidence interval of P=0.95. Were carried 
out to determine the structure of austenite inherited 
by martensite by using a scanning electron micro-
scope Inspect F with a Schottky field emission gun. 

RESULTS

In the conducted experiments, the steel mi-
croalloyed with Ti, Nb and N, deformed in high-
temperature compression investigation to ε=1.2, 
revealed flow curves of different waveforms, de-
pendent mainly on the austenitizing temperature as 
well as the strain temperature and rate (Figure 1). 

After austenitizing at TA = 1250°C and 1200°C 
and deformation in a temperature range of Tdef = 
1100÷1250°C at a rate between 1.0s-1 and 15.9s-

1, the recorded σ-ε curves are characterized by 
the occurrence of more or less distinct maximum 
flow stress and a limited scope of fixed stresses, 

determined by the course of dynamic recrystal-
lization (Figure 1–3). 

At a lower deformation temperature (900 
and 1000 °C), dynamic recrystallization is not 
seen (Figure 1a, 1b). As the deformation (ε = 
1.2) achieved in the compression experiment 
performed is too small to trigger the dynamic re-
crystallization process in the investigated steel. 
Under such deformation conditions, dynamic re-
covery is the decisive process that removes the 
effects of strain hardening.

At a higher deformation temperature 
(1100÷1250 °C), the σ-ε curves show a slight 
reduction in flow stress value (Figure 3). The εm 
values on the σ-ε curves decrease as the strain 
temperature increases and the strain rate decreas-
es. The changes in the flow stress of the investi-
gated hot-deformed steel depend significantly on 
the strain temperature and strain rate, but do not 
depend clearly on the austenitizing temperature 
within the investigated range (1250÷1100 °C). 
The maximum stress values in the steel after aus-
tenitizing and deformation at 1200 °C increase 
from 78.8 MPa to 115.6 MPa along with increase 
in the strain rate in the range between 1.0 s-1 and 
15.9 s-1 (Figure 2b). After austenitizing at 1200 

Figure 1. The effect of strain temperature and strain rate in compression investigation on flow curves 
of the investigated steel austenitized at 1250°C, Tdef: a) 900 °C, b) 1000 °C, c) 1100 °C, d) 1250 V
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°C and deformation at 1100 °C while at the same 
maintaining the same rate, the σmax values increase 
from 108 MPa to 151 MPa (Figure 2a).

The metallographic examinations carried out 
allowed the effect of high-temperature deformation 
parameters on the size and shape of the primary aus-
tenite grain (do) before a g→a’ transition conditioned 
by the course of thermally activated processes to be 
determined. It was found that austenitizing temper-
ature had a decisive impact on the austenite grain 
size before high-temperature deformation (Figure 
4). The investigated steel austenitized at 1100 °C re-
veals austenite grains of do = 36 μm (Figure 4a). The 
increase in austenitizing temperature up to 1200 °C 
or 1250 °C results in an increase in the primary grain 
size γ up to approximately 76 μm or 83 μm, respec-
tively (Figure 4c). After the steel has been cooled 
down from this austenitizing temperature range in 
water, lath martensite with bainite areas (Figure 4b, 
d) and various lath sizes were revealed in the micro-
structure of the investigated steel.

The microphotograph (Figure 5) shows the re-
sults of metallographic observations of microalloy 
steel that has been deformed plastically in compres-
sion investigation at a strain rate of approx. 1.0 s-1 
and a constant strain degree (ε = 1.2) in a temperature 

range of 1200÷800 °C after austenitizing at 1200 °C. 
Primary austenite grains of varying sizes and forms 
depending on strain temperature were revealed in the 
structure of HSLA steels. Deformation at 1200 °C 
and 1100 °C allows the dynamically recrystallized γ 
grains of approx. 16.1 µm (Figure 5a) and approx.10 
µm (Figure 5b), respectively, to be obtained within 
the entire material volume (Table 2).

The advantageous effect of refining γ grains 
while maintaining their high dimensional unifor-
mity and equiaxiality is shown clearly in the micro-
photograph (Figure 5b). After deformation at 1000 
°C, fine recrystallized γ grains were revealed in the 
near-boundary areas and occasionally within the 
primary austenite grains as a result of the initiation 
of dynamic recrystallization (Figure 5c), while after 
deformation at 800 °C, clearly elongated primary 
austenite grains with a number of deformed twins 
and slip bands, which are characteristic of the hard-
ening stage on σ-ε flow curves with a small contri-
bution of thermally-activated processes, primarily 
dynamic recovery, were revealed (Figure 5d).

The additive effect of strain temperature and 
strain rate in the austenitizing temperature range 
(1250 °C, 1200 °C) on the structure of primary 
austenite grains of the investigated steel is shown 

Figure 2. The effect of strain temperature and strain rate in compression investigation on 
flow curves of HSLA steel austenitized at 1200 °C, Tdef: a) 1100 °C, b) 1200 °C

Figure 3. The effect of strain temperature and strain rate in compression investigation on the 
flow curves of microalloyed steel austenitized at 1100°C, Tdef a) 900°C, b) 1000°C
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in (Figure 6, 7). The increase in strain rate up to 
approx. 15.9 s-1 causing the effect of delayed dy-
namic recrystallization of the investigated steel, 
recorded on the flow curves, also affects the micro-
structure of primary γ grains in the analyzed strain 
temperature range (Figure 6). At a comparable 
strain temperature of 1100 °C and strain degree (ε 
= 1.2), the primary austenite grains of the investi-
gated steel deformed at a rate 1.0 s-1 are completely 
dynamically recrystallized (Figure 5b), while those 

deformed at a rate3.6 s-1 only show partial dynam-
ic recrystallization (Figure 7a). A similar effect of 
changes in microstructure of primary γ grains is 
observed for a strain temperature of 1000 °C and a 
strain rate of 3.6 s-1 or 15.9 s-1 (Figure 6). In (Fig-
ure 7b), austenite after dynamic deformation(TA= 
1200°C Tdef= 900°C, ε = 1.2) reveals a micro-
structure of elongated grains with deformed twins 
inside them and fine dynamically recrystallized 
grains mostly at the boundaries of former primary 

Figure 4. Structure of the investigated steel after austenitizing at: a, b) 1100 °C; c, d) 
1250 °C; primary austenite grain size (a, c), martensitic – bainitic structure (b, d)

Figure 5. The effect of strain temperature at a strain rate = 1.0 s-1 on the structure of primary austenite 
grains of the investigated steel: a) 1200 °C, b) 1100 °C, c) 1000 °C , d) 800 °C (TA=  1200 °C, ε = 1.2)
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austenite grains, which is a structure characteristic 
of the initial phase of dynamic recrystallization. 

In the investigated steel deformed from ε = 
0.268 at an austenitizing temperature of 1200 °C 
and a rate 1.0 s-1, fine recrystallised austenite grains 
were revealed on the background of the primary 
γ grains corresponding to the applied austenitizing 
temperature (Figure 8a). Under such conditions, 
the strain of ε = 0.4 at 1000 °C is not sufficient 
to initiate dynamic recrystallization (Figure 8b). 
All the more in case of a compression investiga-
tion of the investigated steel at 800 °C and 900 
°C and strain degree ε = 0.6, the revealed primary 
austenite grains only show distinct effects of strain 

hardening or dynamic recovery, but do not reveal 
the common symptoms indicating a potential con-
tribution of dynamic recrystallization (Figure 9).

The austenite grain size for the analyzed 
range of strain parameters due to which the main 
process resulting in the reduction of hardening 
in HSLA steel was dynamic recrystallization is 
shown in Table 2. The structure of austenite in-
herited by martensite in the investigated steel 
after compression deformation at 1000 °C and 
a rate of 1.0 s-1 (TA= 1200 °C) is shown in the 
microphotograph (Figure 10).The boundaries of 
dynamically recrystallized austenite grains were 
observed in the background of martensite plates. 

CONCLUSIONS

The austenitizing temperature before the γ to α’ 
transformation has a decisive impact on the primary 
austenite grain size in HSLA steel. The investigat-
ed steel austenitized at 1100 °C is characterised by 
the austenite grains with average diameter of do = 
34 μm, and after austenitizing at 1200 and 1250 °C 
by grains of do = 74 μm and 83 μm, respectively. For 
the investigated microalloyed steel with Ti, Nb and 
N, the size of the dynamically recrystallized γ grain 
decreases as the strain temperature is lowering and 
increasing. These parameters have a much greater 
impact on the regrouping and distribution of dislo-
cations resulting in the formation of recrystallization 

Table 2. Average primary austenite grain diameter
Austenitizing temperature, 

°C
Average grain diameter 

do, µm
Strain temperature,  

°C
Strain rate,

s-1
Average grain diameter 

d, µm

1200 76.1 ± 12
1200

1.0
16.1 ± 2 

1100 10.0 ± 1

1100 34.3 ± 10 1100 3.6 9.8 ± 2

Figure 6. Partially dynamically recrystallized primary 
austenite grains of the HSLA steel after deformation 
at 1000 °C and εo = 15.9 s-1 (TA = 1250 °C, ε = 1.2)

Figure 7. Partially dynamically recrystallized primary austenite grains after 
deformation at εo = 3.6 s-1 and a) 1100 °C, b) 900 °C (TA = 1200 °C, ε = 1.2)
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fronts (grain refinement) than on the rate of their 
migration (grain growth). The reduction in a strain 
temperature from 1200 to 1100 °C at an austenitiz-
ing temperature of 1200 °C and strain rate of 1.0 s-1 
allowed the γ grain size to be reduced from approx. 
16 μm to approx. 10 μm. The increase in strain rate 
up to = 3.6 s-1 at a strain temperature and an austen-
itizing temperature of 1100 °C has resulted in the 
reduction in austenite grain size to d = 9.8 μm in 

HSLA steel. The grain size obtained during dynam-
ic recrystallization does not depend on the primary 
grain size obtained during austenitizing in the anal-
ysed temperature range (1100–1250 °C).

Figure 9. The effect of the HSLA steel strain degree and strain temperature on the structure of primary 
austenite grains: a) ε = 0.6, Tdef = 800 °C, b) ε = 0.6, Tdef = 900 °C (TA = 1200 °C, strain rate = 1.0 s-1), 

b) ε = 0,6, Tdef = 900 °C (TA = 1200 °C, εo = 1.0 s-1)

Figure 10. Structure of dynamically recrystallized 
austenite compared to martensite after deformation of 
HSLA steel at 1000 °C and a rate of 1 s-1 followed by 

water cooling (TA = 1200 °C, ε = 1.2)

Figure 8. The effect of HSLA steel strain degree and strain temperature on the structure of primary austenite 
grains: a) ε = 0.268, Tdef  = 1200 °C, b) ε = 0.4, Tdef  = 1000 °C (TA = 1200 °C,  εo = 1.0 s-1)

Figure 11. Result of the EBSD analysis carried out 
for the HSLA steel after deformation at 1000 °C 
and a rate of 1.0 s-1 (TA = 1200 °C, ε = 1.2/water)
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