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Abstract: We discuss some aspects of similarity measures in the con-
text of Atanassov’s intuitionistic fuzzy sets (IFSs, for short). IFSs, pro-
posed in 1983, are a relatively new tool for the modeling and simula-
tion and, because of their construction, present us with new challenges
as far the similarity measures are concerned. Specifically, we claim that
the distances alone are not a proper measure of similarity for the IFSs.
We stress the role of a lack of knowledge concerning elements (options,
decisions, etc.) and point out the role of the opposing (complementing)
elements. We also pay attention to the fact that it is not justified to talk
about similarity when one has not enough knowledge about the compared
objects/elements. Some novel measures of similarity are presented.

Keywords: similarity measures, Atanassov’s intuitionistic fuzzy sets,
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1. Introduction

To propose and use a proper similarity measure is both a complex and important task.
Much depends on the problem discussed. The similarity measures have been a subject
of interest in science for many years and it has been well known that there is no one and
only similarity measure. The roots of the notion of similarity are found in the works

of Pythagorean philosophers (Reeves, 2020). Since then, a whole array of similarity
measures have been proposed, discussed and compared.

In this paper we deal with one, yet very popular type of similarity measures, seen
as dual measures of distances. However, this point of view is challenged nowadays.
We discuss here measures of similarity where distances are used, but we emphasize
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that the complements of the objects (elements, optiong, @y an important role as
well for the very meaning of similarity. Moreover, we shovatiwhen we are faced
with elements which are difficult to classify (which meanattthey are from the border
regions), it is also difficult to speak about their similarib other elements. The con-
siderations are presented in the context of Atanassowi#immistic fuzzy sets (IFSs,
for short). The motivation is that the IFSs are one of sigaifiand widely used exten-
sions of fuzzy sets. They have attracted a lot of attenttus,fact being confirmed by
many citations. The IFSs are a very convenient tool whileingalecisions, analyzing
data, etc. Their structure renders a way of thinking by a hhucassidering pros, cons,
and a lack of knowledge when faced with real problems. A lackmmwledge is a
challenge when looking for a suitable measure of similaNie discuss the problem
in detail.

The paper is structured as follows. In Section 2 we brieflali¢be basic informa-
tion about the IFSs, including a geometrical represematod some notions, which
are used in the further considerations. In Section 3 a typjmaroach for examining the
similarity by using distances is discussed, and the impoga&f taking into account the
complement elements is shown. Several measures are mesert discussed. Next,
we consider the role of transitivity, which is important hretcontext of distances, but
should be carefully considered in the context of similariye also discuss another
issue that constitutes a challenge, being the result ofitledf knowledge, occurring
in many real tasks, and is intrinsically linked to the IFSmally, Section 5 concludes
the paper with a summary.

2. Brief introduction to intuitionistic fuzzy sets
2.1. The preliminaries and the prevoiuos work
One of the possible generalizations of a fuzzy seXiZadeh, 1965), given by

A = {{z,puy (x)|z € X} (1)

where i,/ (z) € [0,1] is the membership function of the fuzzy sét, is an IFS
(Atanassov, 1983, 1999, 2012), denotdvhich is given by

A= {{z, pa(z),va(z))r € X} 2
where:us : X — [0,1] andvys : X — [0, 1] such that
0<pa(z)+ralz) <1 3)

andpa(x), va(z) € [0,1] denote the degree of membership and the degree of non-
membership of: € A, respectively. (See Szmidt and Baldwin, 2006, for assignin
memberships and hon-memberships for IFSs from data.)

For each IFS inX, we will call

ma(r) =1 —pa(z) —va(z) (4)
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anintuitionistic fuzzy indexr ahesitation margirof x € A, this quantity expressing
the lack of knowledge of whether belongs toA or not (cf. Atanassov, 1999). Itis
obvious thab<m4(x)<1, for eachr € X.

The hesitation margin has been shown to be important whitsidering the dis-
tances (Szmidt and Kacprzyk, 1997, 2000, 2005, 2006), pn{@zmidt and Kacprzyk,
2001, 2007), similarity (Szmidt and Kacprzyk, 2004, 200fdn)the IFSs, etc. i.e., the
measures that play a crucial role in virtually all infornoettiprocessing tasks (Szmidt,
2014, and Szmidt and Kacprzyk, 2015).

The hesitation margin turns out to be relevant for appliceti— in image process-
ing (cf. Bustince et al., 2006), classification of imbalash@nd overlapping classes
(cf. Szmidt and Kukier, 2006, 2008a,b), the classificati@tie intuitionistic fuzzy
trees (cf. Bujnowski, Szmidt and Kacprzyk, 2014), selectd the best discrimina-
tive attributes (Szmidt, Kacprzyk and Bujnowski, 2021)afen correlation coeffi-
cient (Szmidt and Kacprzyk, 2010a, 2012; Szmidt, Kacprayk Bujnowski, 2011a,b,
2012a), Spearman correlation coefficient (Szmidt and Kap2010c), Kendall cor-
relation coefficient (Szmidt and Kacprzyk, 2016b,c), Pipat Component Analysis
(Szmidt and Kacprzyk, 2012a; Szmidt, Kacprzyk and Bujnawgki11a,b, 2012a),
ranking procedures (Szmidt and Kacprzyk, 2008a,c, 20092610b), text categoriza-
tion (Szmidt and Kacprzyk, 2008b), group decision making.(éAtanassova, 2004),
genetic algorithms (see, for instance, Roeva and Michedik®013), negotiations, con-
sensus reaching, voting, etc. It is worth mentioning thatadpproaches referred to
above were successfully applied for benchmark data fronutbeMachine Learning
Repository (www.ics.uci.edu/ mlearn/).

Certainly, each fuzzy set may be represented by the follgu#s
A={<z,py (), 1—py(z)>|re X} (5)
On the other hand, for each fuzzy sétin X, we evidently have
Ty(@)=1—py(x) —[1—py () =0foreachr € X. (6)

The application of IFSs instead of fuzzy sets means thedantrion of another
degree of freedom into the description of a set. Such a gkregian of fuzzy sets gives
us an additional possibility to represent imperfect knalgks, what leads to describing
many real problems in a more adequate way.

Basically, the IFSs based models may be adequate in sitgatiben we face hu-
man testimonies, opinions, etc. involving answers of thypes:

e yes,
e No,
e | do not know, | am not sure, etc.

\oting can be a good example of such a situation, as the humnsvmay be
divided into three groups of those who:

e vote for,
e Vvote against,
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Figure 1. Geometrical representation of IFSs in 3D

e abstain or give invalid votes.

As noted already, applications of IFSs to group decisioninggknegotiations, and
other real situations are presented in Szmidt and Kacpszdpers, listed in the refer-
ences.

2.2. Geometrical representation of IFSs

Since for each element, belonging to an IFS, the values of membershig), non-
membership/(z), and the intuitionistic fuzzy index(z) sum up to one, i.e.

() + v(e) +mla) = 1 )

and . (x), vi(x), m(x) € [0,1] we can imagine a unit cube (Fig. 1). Inside the cube
there is anV/ N H triangle, where equation (7) is fulfilled (Szmidt and Kagk,22000,
Szmidt, 2014). Consequently, tAé N H triangle represents the surface, within which
coordinates of any element belonging to an IFS can be remegseEach point belong-
ing to theM N H triangle is described via three coordinatés; v, 7). PointM (1,0, 0)
represents the elements fully belonging to an IFg as1. PointN (0, 1,0) represents
the elements fully not belonging to an IFS:as= 1. Point H(0,0, 1) represents the
elements about which we are not able at all to say if they lgelamnot to an IFS
(intuitionistic fuzzy indexr = 1). The segmenf/ N (wherewr = 0) represents the
elements belonging to the classical fuzzy sgts-(v = 1).

Any combination of the values characterizing an IFS can peesented inside the
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triangle M N H. This means that each element belonging to an IFS can besesyiesl
as a poinf i, v, ) belonging to the interior of the triangle/ N H (Figure 1).

REMARK 1 We use the capital letters (e.d, N, H) for the geometrical represen-
tation of z;'s (Fig. 1) on the plane. The same notation (capital lettéssiised in the
paper for sets, but we always explain the current meaningsyinabol used.

In our further considerations we will use the notion of dista and of the comple-
ment of an element.

Following the three term description of the IFSs (cf. Szn#@14, Szmidt and
Kacprzyk, 2000, 2010c, 2011a; Szmidt, Kacpszyk and Bujkgw§20) the Hamming
distance between IFS$andB is

lirs(A, B) Z | pa(x (@) | + | va(z)—vp(2) | + | Talz)—7B(2) |;
zeE
(8)
the Euclidean distance is
q}FS'(Av B) =
\/;(wa) — pp(2))? + (va(z) —vp(2))?) + (ralz) — 75(2))?);
zelk

(9)

the Hausdorff distance, for the normalized Hamming distaxpressed in the spirit of
(Szmidt and Kacprzyk, 2000, 2006), given by (8) (see Szmidtkacprzyk, 2011a),
is

Hy(A,B) = > max {lpales) — ()], va(es) — vl
i=1

ma(a:) — mp (i)} (10)

wherel}.¢(A, B), q} rs(A, B), andH3(A, B) € [0,1] and fuffill all the properties of
distances. In the above formulags the number of elements.

The complement© of an IFSA is
AY = {(z,va(x), pa(x), ma(x))|z € X} (11)

Accounting for the complement elements in the similarityasi@es seems impor-
tant in many tasks. For example, in image recognition, thetrfaissimilar” image is
a negative image which can be understood as an image cagsigtthe complement
elements.
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3. A typical approach viameasuringa distance

A similarity measurds often definedvia a distancemeasureand — intuitively — the
smallerthe distance the biggerthe similarity. However,to be a propermeasureof
similarity, sucha measurds not alwaysrequiredto satisfy all the distanceaxioms.
Thesimilarity hastypically beenassumedo be symmetric. Tversky(1977),however,
hasprovidedsomeempiricalevidencethat similarity shouldnot alwaysbe treatedas
asymmetricrelation. For example we may saythatBetty is similar to hermotherbut
we donot saythat Betty’smotheris similar to Betty.

Besidessymmetryalsotransitivity is notalwayswelcome.A well-knownexample
is thathumanbeingsandhorsesredifferent. Howeverbotharesimilarto centaurs So
aproperdistanceaeflectingthe similarity shouldbe smallfrom thehumando centaurs,
andfrom the horse$o centaursbut largefrom the humango horses.

We recall this to showthat a similarity measuremay have somefeatureswhich
canbe usefulin somesituations,but are not welcomein other casegseeCrossand
Sudkamp2002; Wang, De BaetsandKerre, 1995; Veltkamp,2001a,b,and Veltkamp
andHagedoorn2000).

Now we will presenanexampleshowingthata distancealoneis notthebestmea-
sure ofsimilarity.

ExAMPLE 1 Supposeve wishto comparehreeitemsdescribedasz; (u;, vi, 7;), @ =
1,2, 3, to find out if item x; is more similar to item x5 or to item z3. Consider for
simplicity, one attributeonly (or a properly aggregatedet of attributes)so that the
particularitemsare describeds

e itemz1(0.2,0.2,0.6)
e itemx2(0.3,0.4,0.3)
e itemx3(0.1,0.6,0.3).

The respective distances between the attributes describing the above items are equal to,
in terms of (8):

1
Bpg(ry,x2) = 5(\0.2 —0.3] + 0.2 —0.4] + 0.6 —0.3]) = 0.3 (12)

1
Bpg(ry,r3) = 5(\0.2 —0.1/410.2 — 0.6] + 0.6 — 0.3) = 0.4. (13)

As [} .o(z1,72) is smaller thanl} .o (z1,z3), we can come to the conclusion (using
the distances) that the items andx, are more similar tham; andxs.

However, when saying something about the similarity of the elements we should
have in mind similarity regarding their complements, too. If a distance between ele-
mentz and another elementis the same as the distance between elemertd the
complement ofy, we can not speak about similarity betweeandy. It is justified that
an elemeny and its complemeng® should be classified to different classes. Hence,
we are not able to classity if its similarities toy and toy© are the same.
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Having the above in mind we verify the distances betweeand the complements
of x5 andxs, where:

z$ =(0.4,0.3,0.3)
and
2§ = (0.6,0.1,0.3).
As a result we obtain, from (8):
lips(21,25) =0.3 (14)

Bpg(x,2$) =04 (15)

which means that the distance betwegmndz, (12), is equal to the distance between
ry andz§, (14). The same situation occurs in the casepandzs, (13), for which
the distance is equal to the distance betwegmandz§, (15). It is difficult to agree
that in such a situation we can speak about a high similafityeitems.

The above examples justify the following conclusions:

o if adistance between two (or more) elements, or objectsgishen the similar-
ity does not exist, i.e. it is too small to be treated as prégiemilarity”;

o if a distance is small, it is difficult to determine the sinitg having in mind a
pure distance only; the distance can be small and the cohjpdjects can be
more dissimilar than similar.

The above considerations point out that a properly constdusimilarity measure
should take into account in addtion to the distance betwseaohjects, also the distance
to their complements. The measure of similarity betweedRBs, presented by Szmidt
and Kacprzyk (2004a,b) follows this intuitively appealinde.

Let us calculate the similarity of any two elements beloggman IFS, which are
geometrically represented by pointsand F' (Fig. 2) belonging to the triangl&/ N H.
The proposed measures indicate whetkies more similar toF" or to F©, where ¢
is the complement of". In other words, the proposed measures answer the question
whetherX is more similar or more dissimilar tb' (Fig. 2), expressed as:

L (X, F
Simyie(X, F) = lips(X, F) (16)

" s (X, FO)
where:l}FS(X, F)is adistance fronX (ux,vx,7x) 10 F(up, Ve, 7F),

I es(X, FO) is a distance fronX (ux, vx,mx) 10 FC(vp, pp, 7r),

F%, (11), is a complement dF, distances} .4 (X, F) andi} (X, F¢) being calcu-
lated from (8).
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Figure 2. The triangld/ N H explaining the ratio-based measure of similarity

The following conditions are fulfilled for (16)
0<Simypyie (X, F)<oo a7
Simpyre (X, F) = Simpge(F, X). (18)

Szmidt and Kacprzyk (2004a) have noticed that the formua ¢an also be stated
as

l}FS(XvF) _ Z}FS(XchC)
l}FS(XvFC) B l}FS(XvFC)
Z}FS(X’ F) _ l}FS(XC’FC)
I}FS(XC7F) a l}FS(XCPF) .

Simypye (X, F) =

(19)

Certainly, we assume that the denominators in (19) are naleq zero.
It can be noticed that

e if X andF are identical, thet$im,,;..(X, F) = 0;

e if X is to the same extent similar t8 and F¢ (the respective distances are
equal), therSim,. o (X, F) = 1;

e if X andFC are closer thatk andF, thenSim,.;.(X, F) > 1;

o if X = FY (or X¢ = F), then there id} (X, FY) = [}.4(X9 F) =0
which means the complete dissimilarity & and F' (or in other words, the
identity of X and '), and thenSim,..;. (X, F) — oo;

e X = F = F® means the highest possible entropy (see (16)) for both elsme
F andX i.e. the highest “fuzziness” — not too constructive a casemiboking
for both the similarity and dissimilarity.

From the above properties it follows that while applying theasure (16) to the
analysis of the similarity of two objects, one should beriasted in the values

0<Simpyie (X, F) < 1
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where0 means the highest similarity, and the values closernwean a very low simi-
larity.
The proposed measure (16) has been constructed for sglétetirobjects, which

are more similar than dissimilar [and well-defined in thesseaf possessing (or not)
attributes we are interested in].

Now, returning to Example 1, we will show that a measure oflsirty, defined as
above, i.e. through (16), between two elements belongira S, is more powerful
than a simple distance between them.

Using the data from Example 1 we obtain from (16) the follayvin
Sim(x1,x2) = ljpg(w1,22)/ljpg(1,25) = 1 (20)

Sim(w1,3) =l pg(@1,23) /1 ps (1,25 ) = 1 (21)
which means that in both cases the similarity is the same andweak, despite the

small distances between the compared items. The similzgttyeenr; andz, is very
weak asr; is similar to the same extent 1o andz$’. The same concerns andzs.

4. Other similarity measures including the concept of a comie-
ment

4.1. The definitions and the measures

The similarity measure (16) properly reflects our intuittmmcerning the similarity, but
it does not follow the range of the usually assumed valuethfosimilarity measures.

To be consistent with the common scientific tradition (i.eing a similarity mea-
sure(s) whose numerical values belong(ol]), and at the same time preserve the
advantages of the measure (16), we were looking for a fumeting the same two
kinds of distances as in (16) (i.8},5(X, F), I}ns(X, F)), but with values of the
measure from the interv@), 1]. Specifically, following Szmidt and Kacprzyk (2007b),
we have

l}FS (X7 F)

f(l}FS(Xa F)al}FS(Xa Fc)) = I}FS(X F) +I}FS(X FC) (22)

The above function, (22), is constructed under the conditiat the case when
X = F = F¢ (which is, by obvious reasons, not interesting in practisexcluded
from the considerations. The assumptidin = F = F¢ means that one tries to
compare an element (represented By)which it is impossible to classify, a& and
F¢ should belong to different classes.= ¢ in terms of geometrical representation
in Fig. 2 means tha’, F and F'©, representing respective elements from the IFS
are at the same point on tHéG segment. So the cases for whigh.q (X, F) =
I}pg(X, F) = 0 are excluded from considerations.

Returning to (22), the function takes into account the sanmedistances as the
previous measure, (16), but now the new measure is norrdd(izevalues are in the
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interval [0, 1]) (see Szmidt and Kacprzyk, 2007b). It is obvious that (22) ®ncept,

which is dual to the similarity measure. If (22) is equal tozehen the similarity is

equal to 1; if (22) is equal to 1, then the similarity is equakéro. In other words, we
may use (22) to construct a similarity measure. Since

0<f(lps(X, F), lips(X, F9))<1, (23)

then we look for a monotone decreasing functipfulfilling:

9 <g(f(ps(X, F),lps(X, F9)))<g(0). (24)
and from the above it follows that
0<g(f(lirs(X, F), lips(X, FO))) — g(1)<g(0) — g(1) (25)
g(f(l}FS(X7 F)al}FS(Xa Fc))) - 9(1)
= 9(0) — 91 =t (20

As a result, we get a function having the properties of a sirityf measure, i.e., a
monotone decreasing function of (22).

DEFINITION 1 (SzMIDT AND KACPRZYK, 2007B)

9(f(Uips(X, F) lips(X, F9))) — g(1)

Sim(Bpg(X, F), bpe(X,FC)) = 27
(lirs(X. F),lps(X. FO) ORI (27)
wheref (I} p5(X, F), g (X, F©)) is given by (22).
A simple functiong, which may here be applied is
glz)=1—x (28)
which gives, from (27) (see, again, Szmidt and Kacprzyk,7200
Siml(Xu F) = Slm(l}FS(Xv F)J}FS(X7 FC)) =
re(X,F)
=1~ f(lips(X,F),ljpg(X,FO)) =1~ LES ") . (29
f( IFS( ) )a IFS( ) )) ljl'FS(X>F) +l}FS(X7FC) ( )
Another functiong(z) can be defined as
1
g(z) = T2 (30)
yielding (Szmidt and Kacprzyk, 2007b)
Sim?(xa F) = Szm(l}FS(X7 F)7l}FS(X7FC)) =
1_f(l}FS(XvF)vl}FS(X’FC)) (31)

- 1+f(l}FS(XaF)vl}FS(XaFC)).
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Figure 3. Contourplot of measure (4.1) for any element frons and (0.7, 0.2, 0.1)

Then, the function
1

g(x) = T2 (32)
leads to (see, once again, Szmidt and Kacprzyk, 2007b)
Simz(X, F) = Sim(ltpg(X, F), pg(X, F)) =
1= fUps (X F) s (X, FO)? 3
L+ flips(X, F), ljpg(X, FO))?
It is possible to use, as welj(z) = ﬁ wheren = 3,4,...,k, but the coun-

terpart similarity measure(s},;—;:) give the values, which are less convenient for the
comparison when the values ofare small (Szmidt and Kacprzyk, 2007b).

The exponential function (cf. Pal and Pal, 1991) is another which may be
applied

glx) =e™", (34)
giving for (22) (Szmidt and Kacprzyk, 2007b)

Sim4(X, F) = Sim(l}FS(Xv F)al}FS(X7 FC)) =
e~ fUips(X.F) 11 ps(X,F9)) _ =1
— — . (35)
1—e1

Certainly, one could continue generating more complicatedtionsg(z) (being
the decreasing functions ¢}, but it would not give any additional insight as far as the
similarity is concerned.
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The similarity measures (29) — (35) satisfy the followingperties:

Sim; (X, F) € [0,1] (36)

Simi (X, X) =1 (37)

Simi(X,X%) =0 (38)

Sim; (X, F) = Sim;(F, X) (39)
fori=1,...,4.

The similarity measures, discussed in this section, etaltiee similarity of any
two elements X and F') belonging to an IFS. The corresponding similarity measure
for the IFSsA and B, containingn elements each, are given by the following formula:

1 n
Simy (A, B)= EZSimk(l}FS(Xia Fy) lps(Xi, FY)) (40)
=1
fork=1,...,4.
Although in the formulas presented above we use the norethlizamming dis-
tance, it is possible to replace it by other kinds of distanteo.

To be more specific, the functigf{l} .o (X, F), [} o (X, F)), given by (22), with
the Hamming distance used in (29) — (35), can be replacedebgdiresponding func-
tion with the Euclidean distance, i.e.:

q}FS(Xv F)
Utps(X, F) + a1 pg(X, FO)

f(q}FS(Xv F), Q}FS(Xa FC)) = (41)

whereq} ¢(X, F) is given by (9). For example, the measure correspondingeo th
similarity measure (29), in which (41) instead of (22) is legh is:

Siml(q}FS(XaF)aq}FS(XvFC)) =1- f(q}FS(XaF)aQ}FS(XaFC))

1
qrps(X, F)

=1- . (42)

q}FS(X7F) +Q}FS(Xv FC)

The measure, corresponding to the similarity measure {81yhich (41) instead
of (22) is applied, is:

N f(Q}FS(Xv F), Q}FS(Xv FC))

1+ fla1ps(X, F),qipg(X, FO))
(43)

Sim2(q}Fs(X» F)a‘]}FS(X, FC))

The measure, corresponding to the similarity measure {83yhich (41) instead
of (22) is applied, is:

. 1= f(@irs(X, F), a1ps(X, FO))?
’ 1 1 Cyy _ I1FS\A L ) drps\As
Sims(qrps(X, F), qrps(X, F7)) 14 f(q o (X, F), qlpg(X, FO))Z
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Figure 4. Contourplot of (4.1) for any element from an IFS é€hd, 0.2, 0.1)

The measure, corresponding to the similarity measure {83yhich (41) instead
of (22) is applied, is:
eff(Q}FS(XﬁF)ﬂ}FS(X#Fc)) — 671

Sima(qips(X, F),qipg(X, F9)) = 1—e!

(45)

We can also introduce other measures of similarity using-thesdorff distance
(cf. Griinbaum, 1967). We have shown (see Szmidt and Kacp2fiKla) that in the
case of the Hausdorff distance between the IFSs we shoula fesmula with all three
terms describing the sets. If in the formulas (29) — (35) vptaree (22) by (10), the new
similarity measures, referring to the Hausdorff dista@ee obtained. For example, the
counterpart of (29) with (10) replacing (22) is:

Sim(Hz(X, F), H3(X,F€)) = 1- f(H3(X,F),Hs(X,F)) =
HS(Xa F)

= 1- .
HS(X>F)+H3(X7FC)

(46)

In Fig. 5 we show an example of results, implied by (46) — trespnce of the comple-
ment of an element and its influence on the results are visible

4.2. The transitivity and the lack of knowledge

The similarity measures discussed here (that is, in Sedfjptake into account not
only the relation to an element we are interested in but &labto its complement. As
a result, the measures discussed here meet better our axpesthan the similarity
measures that are just dual to the distance (cf. Exampleot pxample, we avoid high
values of the similarity of an element and its complementweleer, we should still
use the similarity measures carefully.
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Figure 5. Contourplot of (46) for any element from an IFS ahd (0.2, 0.1)

The question arises what should be done if we wish, e.g., ¢éothues similarity
measure (42) and to differentiate between the elem@rgs0, 0.7) and(0.5,0.4,0.1),
which are obviously different from the point of view of ddois making, but both
are similar to the elemerid.7,0.2,0.1) to the same extent, equal to 0.6 (cf. Fig. 4).
Most important is that we should not determine the simyadf (0.3,0,0.7) and
(0.5,0.4,0.1) before calculating their direct similarity from (42), wieeipon we ob-
tain the value of 0.51 (different from 0.6). This observataout examining similarity
seems important when one tries to conclude about the sitpitrdifferent elements
based on their direct distances to “the ideal” element @),0The transitivity is not
always justified and should not be automatically applied.cAdyexample is provided
by the existing similarities of: humans to centaurs and é®te centaurs, while the
similarity between humans and horses does not exist.

Another important issue is the lack of knowledge.

The IFSs are a specific tool for modeling, making it possiblespresent different
levels of lack of knowledge. From full knowledge, conceman element (which can
represent an option, alternative, etc.), to a completedd&kowledge. In this context,
it is important not to “mechanically” treat the notion of slamity. For example, if we
have two elements about which we know nothing, ice(0, 0, 1) andx2(0, 0, 1), then
we could say that they are formally similar (“the same”). Hwoer, the elements can be
the same or completely different as we know nothing aboumtfzad hence we cannot
compare them.

The above considerations concern, in some sense, othati@its, too. What can
we say about, e.ga;;(0.4,0.4,0.2), 2(0.42,0.38,0.2), andx3(0.38, 0.42,0.2)? The
distances betweer, andz,, andz; andzs are small, so that we could say that all the
elements could be considered very similar. Howewvelis closer to (1, 0, 0), whereas
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x3 is closerto (0, 1, 0). The conclusion is thatifs close tav, it is difficult to consider
similarity (herez; is close tar{ fori = 1,2, 3).

The similarity measures are just a basis for the classificdtisks. As it is difficult
to classify the elements close to the segm@#f in Fig. 2, then we should not speak
about the similarity of the elements belonging to this ragfor which . is close tav).
Moreover, for the elements with high values of the hesitatimrginsr, we should also
be careful when speaking about similarity. For example(if, v, 7) = (0.3,0.1,06),
then we can be faced with the situation wheoould become: + 7 giving (0.9,0.1) or
v could become + 7 giving (0.3,0.7) or, e.g.,u could become: + 0.5 andv could
becomer + 0.57 giving (0.6,0.4). All the three possibilities:(0.9,0.1), (0.3,0.7),
and (0.6, 0.4) are different, and we do not know which one might be real (&1 fee
could consider an infinite number of other possibilitieseteing on how the hesitation
margin could be divided betweenandv).

5. Conclusions

We have discussed some selected measures of similaritgddFSs. It is important
to emphasize that a concrete “tool” has been considerecelyahe IFSs. The possi-
bilities and properties of a tool imply, in a sense, which sugas of similarity should
be used. Certainly, a purpose is very important, too. Weidensd the measures of si-
milarity using distances, but not in a standard way, thatiemthe similarity measure
is a dual measure to the distance (the greater the distdrecentaller the similarity).
We have emphasized, as well, the importance of the complsrrethe IFS similarity
measures, which make use of the distances. We have alsegoutthat for some ele-
ments, belonging to an IFS, looking for similar elementsisdme sense an ill-defined
problem.
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