PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Coastal cliff erosion as a source of toxic, essential and nonessential metals in the marine environment

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Due to the rising environmental awareness, emissions and releases of pollutants, including metals, have been considerably reduced in the last decades. Therefore, the remobilization of natural and anthropogenic contaminants is gaining importance in their biogeochemical cycle. In the marine coastal zone, this process occurs during the erosion of a shore, especially the most vulnerable cliffs. The research was conducted in the Gulf of Gdańsk (southern Baltic Sea) from 2016 to 2017. The sediment cores were collected from four cliffs; additionally, marine surface sediments were also taken. The concentrations of essential (Cr, Mn, Fr, Cu, Zn) and nonessential (Rb, Sr, Y, Zr, Ba) metals were analyzed using the XRF technique. The levels of the analyzed metals were relatively low, typical of nonpolluted areas. However, considering the mass of eroded sediments, the annual load of metals introduced into the sea in this way is significant. In the case of Cu, Zn, and Y the load can amount to a few kilograms, for Cr and Rb – over ten kilograms, for Mn, Sr, and Zr – several tens of kilograms, for toxic Ba – over 100 kg, and in the case of Fe – 4.8 tonnes. During strong winds and storms, when the upper part of a cliff is eroded, especially the load of Zn and Cr entering the sea may increase. The content of Cr, Zr, and Ba in the cliffs was higher compared to marine sediments from the deep accumulation bottom, which indicates that coastal erosion may be an important source of these metals.
Słowa kluczowe
Czasopismo
Rocznik
Strony
553--566
Opis fizyczny
Bibliogr. 88 poz., map., rys., tab., wykr.
Twórcy
  • Institute of Oceanography, University of Gdańsk, Gdynia, Poland
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
  • Institute of Oceanography, University of Gdańsk, Gdynia, Poland
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
Bibliografia
  • 1. Algül, F., Beyhan, M., 2020. Concentrations and sources of heavy metals in shallow sediments in Lake Bafa, Turkey. Sci. Rep. 10,11782. https://doi.org/10.1038/s41598-020-68833-2
  • 2. Allafta, H., Opp, C., 2020. Spatio-temporal variability and pollution sources identification of the surface sediments of Shatt Al-Arab River, Southern Iraq. Sci. Rep. 10, 6979. https://doi.org/10.1038/s41598-020-63893-w
  • 3. Andriolo, U., Gonçalves, G., 2022. Is coastal erosion a source of marine litter pollution? Evidence of coastal dunes being a reservoir of plastics. Mar. Pollut. Bull. 174, 113307. https://doi.org/10.1016/j.marpolbul.2021.113307
  • 4. Antonowicz, J.P., Grobela, M., Opalińska, M., Motała, R., 2017. Heavy metals in beach deposits, bottom sediments of a Baltic fishing port and surface water. Balt. Coast. Zone 21, 211-224.
  • 5. Bełdowska, M., 2015. The influence of weather anomalies on mercury cycling in the marine coastal zone of the Southern Baltic — future perspective. Water Air Soil Pollut. 226, 2248. https://doi.org/10.1007/s11270-014-2248-7
  • 6. Bełdowska, M., Saniewska, D., Falkowska, L., 2014. Factors influencing variability of mercury input to the southern Baltic Sea. Mar. Pollut. Bull. 86, 283-290. https://doi.org/10.1016/j.marpolbul.2014.07.004
  • 7. Bełdowska, M., Jędruch, A., Łęczyński, L., Saniewska, D., Kwasigroch, U., 2016. Coastal erosion as a source of mercury into the marine environment along the Polish Baltic shore. Environ. Sci. Pollut. Res. 23, 16372-16382. https://doi.org/10.1007/s11356-016-6753-7
  • 8. Bełdowska, M., Jędruch, A., Sieńska, D., Chwiałkowski, W., Magnuszewski, A., Kornijów, R., 2021. The impact of sediment, fresh and marine water on the concentration of chemical elements in water of the ice-covered Lagoon. Environ. Sci. Pollut. Res. 28, 61189-61200. https://doi.org/10.1007/s11356-021-14936-w
  • 9. Bielecka, E., Jenerowicz, A., Pokonieczny, K., Borkowska, S., 2020. Land Cover Changes and Flows in the Polish Baltic Coastal Zone: A Qualitative and Quantitative Approach. Remote Sens. 12, 2088. http://dx.doi.org/10.3390/rs12132088
  • 10. Bielicka, A., Ryłko, E., Bojanowska, I., 2009. Zawarto pierwiastków metalicznych w glebach i warzywach z ogrodów działkowych Gdańska i okolic. Ochr. Środ. Zas. Nat. 40, 209-216 (in Polish).
  • 11. Biswas, B., Qi, F., Biswas, J.K., Wijayawardena, A., Khan, M.A.I., Naidu, R., 2018. The Fate of Chemical Pollutants with Soil Properties and Processes in the Climate Change Paradigm — A Review. Soil Syst. 2, 51. https://doi.org/10.3390/soilsystems2030051
  • 12. Blott, S.J., Pye, K., 2001. GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf. Process. Landf. 26, 1237-1248. https://doi.org/10.1002/esp.261
  • 13. Bojakowska, I., 2011. Geochemical Characteristics of River Sediments in the Baltic Sea Catchment Area. In: U ́scinowicz, S. (Ed.), Geochemistry of Baltic Sea surface sediments. Polish Geological Institute, Warsaw, 36-46.
  • 14. Burska, D., Szymczak, E., 2019. The conditions of sedimentation of Gdańsk Bay sediments (Baltic Sea, Poland) in the light of litho-logical features and carbon content. IOP Conf. Ser.: Earth Environ. Sci. 362, 012098. https://doi.org/10.1088/1755-1315/362/1/012098
  • 15. Clarke, L.W., Janerette, G.D., Bain, D.J., 2015. Urban legacies and soil management affect the concentration and speciation of trace metals in Los Angeles community garden soils. Environ. Pollut. 197, 1-12. https://doi.org/10.1016/j.envpol.2014.11.015
  • 16. Damrat, M., Zaborska, A., Zajączkowski, M., 2013. Sedimentation from suspension and sediment accumulation rate in the River Vistula prodelta, Gulf of Gdańsk (Baltic Sea). Oceanologia 55 (4), 937-950. https://doi.org/10.5697/oc.55-4.937
  • 17. Di Bona, K.R., Love, S., Rhodes, N.R., McAdory, D., Sinha, S.H., Kern, N., Kent, J., Strickland, J., Wilson, A., Beaird, J., Ramage, J., Rasco, J.F., Vincent, J.B., 2011. Chromium is not an essential trace element for mammals: effects of a “low-chromium” diet. J. Biol. Inorg. Chem. 16, 381-390. https://doi.org/10.1007/s00775-010-0734-y
  • 18. Dijair, T.S.B., Silva, F.M., Teixeira, A.F.S., Silva, S.E.G., Guilherme, L.R.G., Curi, N., 2020. Correcting field determination of elemental contents in soils via portable X-ray fluorescence spectrometry. Cienc. Agrotecnologia 44, e002420. https://doi.org/10.1590/1413-7054202044002420
  • 19. Dubrawski, R., Zawadzka-Kahlau, E., 2006. Przyszłość ochrony polskich brzegów morskich. Maritime Institute in Gdańsk, Gdańsk, 302 pp. (in Polish).
  • 20. Earlie, C.S., Masselink, G., Russell, P.A., Shail, R.K., 2015. Application of airborne LiDAR to investigate rates of recession in rocky coast environments. J. Coast. Conserv. 19, 831-845. https://doi.org/10.1007/s11852-014-0340-1
  • 21. Easterbrook, D.J., 1982. Characteristic Features of Glacial Sediments. In: Scholle, P.A., Spearing, D. (Eds.), Sandstone Depositional Environments. American Association of Petroleum Geologists, Tulsa, 1-10. https://doi.org/10.1306/M31424C2
  • 22. EEA, 2021. European Union emission inventory report 1990-2019, under the UNECE Convention on Long-range Transboundary Air Pollution (LRTAP), EEA Report, 5/2021. European Environment Agency, 161 pp.
  • 23. Emsley, J., 2011. Nature’s Building Blocks: An A-Z Guide to the Elements. Oxford Univ. Press, New York, 710 pp.
  • 24. Falandysz, J., Frankowska, A., Jarzyńska, G., Dryżałowska, A., Kojta, A.K., Zhang, D., 2011. Survey on composition and bioconcentration potential of 12 metallic elements in King Bolete (Boletus edulis) mushroom that emerged at 11 spatially distantsites. J. Environ. Sci. Health B 46, 231-246. https://doi.org/10.1080/03601234.2011.540528
  • 25. Falandysz, J., Mędyk, M., Treu, R., 2018. Bio-concentration potential and associations of heavy metals in Amanita muscaria (L.) Lam. from northern regions of Poland. Environ Sci. Pollut. Res. 1730, 25190-25206. https://doi.org/10.1007/s11356-018-2603-0
  • 26. Folk, R.L., 1974. The petrology of sedimentary rocks. Hemphill Publ. Co., Austin, 182 pp.
  • 27. Gashi, F., Frančišković-Bilinski, S., Bilinski, H., 2009. Analysis of sediments of the four main rivers (Drini i Bardhë, Morava e Binçës, Lepenc and Sitnica) in Kosovo. Fresenius Environ. Bull. 18, 1462-1471.
  • 28. Goodenough, K.M, Wall, F., Merriman, D., 2017. The rare earth elements: demand, global resources, and challenges for resourcing future generations. Nat. Resour. Res. 27, 201-216. https://doi.org/10.1007/s11053-017-9336-5
  • 29. Haroon, A.M., Szaniawska, A., Surosz, W., 1995. Changes in heavy metal accumulation in Enteromorpha spp. from the Gulf of Gdańsk. Oceanologia 37 (1), 99-110.
  • 30. HELCOM, 2021. Inputs of hazardous substances to the Baltic Sea. Balt. Sea Environ. Proc. 179, 48 pp
  • 31. Janušaitė, R., Jarmalavičius, D., Pupienis, D., Žilinskas, G.,Jukna, L., 2021. Nearshore sandbar switching episodes and their relationship with coastal erosion at the Curonian Spit, Baltic Sea. Oceanologia, (in press). https://doi.org/10.1016/j.oceano.2021.11.004
  • 32. Jarsjö, J., Chalov, S.R., Pietroń, J., Alekseenko, A.V., Thorslund, J., 2017. Patterns of soil contamination, erosion and river loading of metals in a gold mining region of northern Mongolia. Reg. Environ. Change 17, 1991-2005. https://doi.org/10.1007/s10113-017-1169-6
  • 33. Jędruch, A., Bełdowski, J., Bełdowska, M., 2015. Long-term changes and distribution of mercury concentrations in Surface sediments of the Gdansk Basin (Southern Baltic Sea). J. Soil Sed. 15, 2487-2497. https://doi.org/10.1007/s11368- 015- 1148- 9
  • 34. Jędruch, A., Kwasigroch, U., Bełdowska, M., Kuli ́nski, K., 2017. Mercury in suspended matter of the Gulf of Gda ́nsk: Origin, distribution and transport at the land—sea interface. Mar. Pollut. Bull. 118, 354-367. https://doi.org/10.1016/j.marpolbul.2017.03.019
  • 35. Jędruch, A., Falkowska, L., Saniewska, D., Durkalec, M., Nawrocka, A., Kalisińska., Kowalski, A., Pacyna, J.M., 2021. Status and trends of mercury pollution of the atmosphere and terrestrial ecosystems in Poland. Ambio 50, 1698-1717. https://doi.org/10.1007/s13280-021-01505-1
  • 36. Kabata-Pendias, A., Mukherjee, A., 2007. Trace elements from soilto human. Springer, Berlin Heidelberg, 550 pp. https://doi.org/10.1007/978-3-540-32714-1
  • 37. Karlonienė, D., Pupienis, D., Jarmalavičius, D., Dubikaltinienė. A., Žilinskas, G., 2021. The impact of coastal geodynamic processes on the distribution of trace metal content in sandy beach sediments, south-eastern Baltic Sea coast (Lithuania). Appl. Sci. 11, 1106. https://doi.org/10.3390/app11031106
  • 38. Kaulbarsz, D., 2005. Geology and glaciotectonics of the Orłowo Cliff in Gdynia, northern Poland. Prz. Geol. 53, 572-581.
  • 39. Kostrzewski, A., Winowski, M., Zwoliński, Z., 2020. Morphodynamic types of postglacial cliffs of the Southern Baltic. EGU General Assembly, 20486. https://doi.org/10.5194/egusphere-egu2020-20486
  • 40. Kumblad, L., Bradshaw, C., 2008. Element composition of biota, water and sediment in the Forsmark area, Baltic Sea, Technical Report TR-08-09. Swedish Nuclear Fuel and Waste Management, 109 pp.
  • 41. Kupczyk, A., Kołecka, K., Gajewska, M., Siedlewicz, G., Szubska, M., Grzegorczyk, K., Walecka, D., Kotwicki, L., Bełdowski, J., Bełdowska, M., Graca, B., Staniszewska, M., Chubarenko, B., Schubert, H., Woelfel, J. (Eds.), 2021. Nutrient and pollutant flux to coastal zone originating from decaying algae and plants on beaches. Case studies for innovative solutions of beach wrack use, 63-73.
  • 42. Kwasigroch, U., Bełdowska, M., Jędruch, A., Saniewska, D., 2018. Coastal erosion — a „new” land-based source of labile mercury to the marine environment. Environ. Sci. Pollut. Res. 25, 28682-28694. https://doi.org/10.1007/s11356-018-2856-7
  • 43. Kwasigroch, U., Bełdowska, M., Jędruch, A., Łukawska-Matuszewska, K., 2021. Distribution and bioavailability of mercury in the surface sediments of the Baltic Sea. Environ. Sci. Pollut. Res. 28, 35690-35708. https://doi.org/10.1007/s11356-021-13023-4
  • 44. Łabuz, T., 2013. Sposoby ochrony brzegów morskich i ich wpływ na środowisko przyrodnicze polskiego wybrzeża Bałtyku: Raport. WWF Poland, Warszawa, 187 pp. (in Polish).
  • 45. Łabuz, T., 2014. Erosion and its rate on an accumulative Polish dune coast: the effects of the January 2012 storm surge. Oceanologia 56 (2), 307-326. https://doi.org/10.5697/oc.56-2.307
  • 46. Łęczyński, L., Kubowicz-Grajewska, A., 2013. Studium przypadku: Klif Orłowski. In: Łabuz, T. (Ed.), Sposoby ochrony brzegów morskich i ich wpływ na ́srodowisko przyrodnicze polskiego wybrze ̇za Bałtyku: Raport. WWF Poland, Warszawa, 152-161 (in Polish).
  • 47. Łukawska-Matuszewska, K., Bolałek, J., 2008. Spatial distribution of phosphorus forms in sediments in the Gulf of Gda ́nsk (southern Baltic Sea). Cont. Shelf Res. 28, 977-990. https://doi.org/10.1016/j.csr.2008.01.009
  • 48. Meier, M., Dieterich, C., Gröger, M., Dutheil, C., Börgel, F., Safonova, K., Christensen, O.B., Kjellström, E., 2022. Oceanographic regional climate projections for the Baltic Sea until 2100. Earth Syst. Dynam. 13, 159-199. https://doi.org/10.5194/esd-13-159-2022
  • 49. Mikulski, S.Z., Kramarska, R., Zieli ́nski, G., 2016. Rare earth elements pilot studies of the Baltic marine sands enriched in heavy minerals. Miner. Resour. Manage. 32, 5-28. https://doi.org/10.1515/gospo- 2016- 0036
  • 50. Mojski, J.E., 2000. The evolution of the southern Baltic coastal zone. Oceanologia 42 (3), 285-303. Myślińska, E., 1992. Laboratoryjne badania gruntów. PWN, Warszawa 244 pp. (in Polish).
  • 51. Pempkowiak, J., 1997. Zarys Geochemii Morskiej. University of Gdańsk Press, Gdańsk, 170 pp. (in Polish).
  • 52. Pilch, W., Stachurski, J., Sztaba, K., 1990. Badania i możliwości wykorzystania minerałów ciężkich z bałtyckich piasków plażowych. Physicochem. Probl. Miner. Process. 23, 71-79 in Polish).
  • 53. Prądzyński, W., Zborowska, M., Waliszewska, B., Szulc, A., 2010. Chemical composition and content of selected heavy metals in the wood of common sea buckthorn (Hippohaë rhamnoides l.) growing in the coastal regions of the Baltic Sea. Acta Sci. Pol. Silv. Colendar. Rat. Ind. Lignar. 9, 45-51.
  • 54. Pruszak, Z., Zawadzka, E., 2008. Potential Implications of Sea-Level Rise for Poland. J. Coast Res. 24, 410-422. http://www.jstor.org/stable/30137846
  • 55. Regard, V., Prémaillon, M., Dawez, T.J.B., Carretier, S., Jeandel, C., Godderis, Y., Bonnet, S., Schott, J., Pedoja, K., Martinod, J., Viers, J., Fabre, S., 2022. Rock coast erosion: An over-looked source of sediments to the ocean. Europe as an example, Earth Planet. Sci. Lett. 578, 117356. https://doi.org/10.1016/j.epsl.2021.117356
  • 56. Renjith, R.A., Rejith, R.G., Sundararajan, M., 2021. Evaluation of coastal sediments: an appraisal of geochemistry using ED-XRF and GIS techniques. In: Rani, M., Seenipandi, K., Rehman, S., Kumar, P., Sajjad, H. (Eds.), Remote Sensing of Ocean and Coastal Environments. Elsevier, Amsterdam, 99-116. https://doi.org/10.1016/B978-0-12-819604-00007-X
  • 57. Różyński, G., Lin, J.G., 2021. Can climate change and geological past produce enhanced erosion? A case study of the Hel Peninsula, Baltic Sea, Poland. Appl. Ocean Res. 115, 02852. https://doi.org/10.1016/j.apor.2021.102852
  • 58. Rumble, J.R., 2021. CRC Handbook of Chemistry and Physics. CRC Press, Boca Raton, 1624 pp.
  • 59. Saniewska, D., Bełdowska, M., Bełdowski, J., Jędruch, A., Saniewski, M., Falkowska, L., 2014a. Mercury loads into the sea associated with extreme flood. Environ. Pollut. 191, 93-100. https://doi.org/10.1016/j.envpol.2014.04.003
  • 60. Saniewska, D., Bełdowska, M., Bełdowski, J., Saniewski, M., Szubska, M., Romanowski, A., Falkowska, L., 2014b. The impact of land use and season on the riverine transport of mercury into the marine coastal zone. Environ. Monit. Assess. 186, 7793-7604. https://doi.org/10.1007/s10661-014-3950-z
  • 61. Singh, M., Rajesh, V.J., Sajinkumar, K.S., Sajeev, K., Kumar, S.N., 2016. Spectral and chemical characterization of jarosite in a palaeolacustrine depositional environment in Warkalli formation in Kerala, South India and its implications. Spectrochim. Acta Mol. Biomol. Spectrosc. 168, 86-97. https://doi.org/10.1016/j.saa.2016.05.035
  • 62. Skorbiłowicz, M., Skorbiłowicz, E., Łapiński, W., 2020. Assessment of Metallic Content, Pollution, and Sources of Road Dust in the City of Białystok (Poland). Aerosol Air Qual. Res. 20, 2507-2518. https://doi.org/10.4209/aaqr.2019.10.0518
  • 63. Sokołowski, A., 2009. Tracing the Flow of Organic Matter Based upon Dual Stable Isotope Technique, and Trophic Transfer to Trace Metals in Benthic Food Web of the Gulf of Gdansk (Southern Baltic Sea). Univ. Gdańsk Press, Sopot, 213 pp.
  • 64. Sokołowski, A., Jankowska, E., Bałazy, P., Jędruch, A., 2021. Distribution and extent of benthic habitats in Puck Bay (Gulf of Gdańsk, southern Baltic Sea). Oceanologia 63 (3), 301-320. https://doi.org/10.1016/j.oceano.2021.03.001
  • 65. Stanisławczyk, I., 2012. Storm-surges Indicator for the Polish Baltic Coast. Int. J. Mar. Navig. Saf. Sea Transp. 6, 123-129.
  • 66. Szamałek, K., Uścinowicz, K., Zglinicki, K., 2018. Rare earth elements in Fe-Mn nodules from the southern Baltic sea — a preliminary study. Biul. Państw. Inst. Geol. 472, 199-212. https://doi.org/10.5604/01.3001.0012.7118
  • 67. Szefer, P., 1990. Mass-balance of metals and identification of their sources in both river and fallout fluxes near Gdańsk Bay, Baltic Sea. Sci. Total Environ. 95, 131-139. https://doi.org/10.1016/0048-9697(90)90058-3
  • 68. Szyczewski, P., Siepak, J., Niedzielski, P., Sobczyński, T., 2009. Research on Heavy Metals in Poland. Polish J. Environ. Stud. 18, 755-768.
  • 69. Szymczak, E., Burska, D., 2019. Distribution of Suspended Sediment in the Gulf of Gdansk off the Vistula River mouth (Baltic Sea, Poland). IOP Conf. Ser.: Earth Environ. Sci. 221, 012053. https://doi.org/10.1088/1755-1315/221/1/012053
  • 70. US EPA, 2002. Mid-Atlantic Integrated Assessment (MAIA) Estuaries 1997-98, Summary Report. US Environmental Protection Agency, 115 pp.
  • 71. Uścinowicz, S.Uścinowicz, S. (Ed.), 2011. Surface Sediments and Sedimentation Processes. Geochemistry of Baltic Sea Surface sediments, 76-80.
  • 72. Uścinowicz, S., Sokołowski, K.Uśinowicz, S. (Ed.), 2011. Main constituents of the Baltic Sea sediments. Geochemistry of Baltic Sea surface sediments, 164-171.
  • 73. Uścinowicz, S., Szefer, P., Sokołowski, K.Uścinowicz, S. (Ed.), 2011. Trace elements in the Baltic Sea sediments. Geochemistry of Baltic Sea surface sediments, 214-274.
  • 74. Uścinowicz, S., Zachowicz, J., Graniczny, M., Dobracki, R., 2004. Geological structure of the southern Baltic coast and related hazards. Pol. Geol. Inst. Spec. Pap. 15, 61-68.
  • 75. Vincent, J.B., 2017. New evidence against chromium as an essential trace element. J. Nutr. 147, 2212-2219. https://doi.org/10.3945/jn.117.255901
  • 76. Wajda, W, 1970. Heavy minerals of the bottom sands (Polish Baltic Coast). Ann. Soc. Geol. Pol. XL, 131-149.
  • 77. Wells, D.V., Hennessee, E.L., Hill, J.M., 2003. Shoreline Erosion as a Source of Sediments and Nutrients Middle Coastal Bays, Maryland. Maryland Geological Survey, Coastal and Estuarine Geology File Report No. 03-07, 163 pp.
  • 78. Wentworth, C.K., 1922. A scale of grade and class terms for clastic sediments. J. Geol. 30, 377-392. https://doi.org/10.1086/622910
  • 79. Wojciechowska, E., Nawrot, N., Walkusz-Miotk, J., Matej-Łukowicz, K., Pazdro, K., 2019. Heavy Metals in Sediments of Urban Streams: Contamination and Health Risk Assessment of Influencing Factors. Sustainability 11, 563. http://dx.doi.org/10.3390/su11030563
  • 80. Woźniak, P.P., Czubała, P., 2014. Nowe spojrzenie na gliny lodowcowe w Gdyni Orłowie. In: Sokołowski, R. (Ed.), Ewolucja środowisk sedymentacyjnych regionu Pobrzeża Kaszubskiego. Univ. Gdańsk Press, Gdańsk, 115-122 (in Polish).
  • 81. Xu, W., Li, X., Wai, O.W.H., Huang, W., Yan, W., 2015. Remobilization of trace metals from contaminated marine sediment in a simulated dynamic environment. Environ. Sci. Pollut. Res. 22, 19905-19911. https://doi.org/10.1007/s11356-015-5228-6
  • 82. Yao, Q., Wang, X., Jian, H., Chen, H., Yu, Z., 2015. Characterization of the particle size fraction associated with heavy metals in suspended sediments of the Yellow River. Int. J. Environ. Res. Public Health 12, 6725-6744. https://doi.org/10.3390/ijerph120606725
  • 83. Zaborska, A., Siedlewicz, G., Szymczycha, B., Dzierzbicka-Głowacka, L., 2019. Legacy and emerging pollutants in the Gulf of Gdańsk (southern Baltic Sea) — loads and distribution revisited. Mar. Pollut. Bull. 139, 238-255. https://doi.org/10.1016/j.marpolbul.2018.11.060
  • 84. Zachowicz, J., Laban, C., Uścinowicz, S., Ebbing, J., Emelyanov, E.M., 2002. Recent sedimentation in the Gulf of Gdansk and its geochemical expression. In: Emelyanov, E.M. (Ed.), Geology of the Gdansk Basin, Baltic Sea. Russian Academy of Sciences, Yantarny Skaz, 380-387.
  • 85. Zaleszkiewicz, L., Koszka-Maroń, D., 2005. Activation processes of degradation of cliff coast of Puck Lagoon. Prz. Geol. 53, 55-62.
  • 86. Zawadzka-Kahlau, E., 2012. Morfodynamika brzegów wydmowych południowego Bałtyku. Univ. Gdańsk Press, Gdańsk, 352 pp. (in Polish).
  • 87. Zelaya Wziątek, D., Terefenko, P., Kurulczyk, A., 2019. Multi-Temporal Cliff Erosion Analysis Using Airborne Laser Scanning Surveys. Remote Sens. 11, 2666. https://doi.org/10.3390/rs11222666
  • 88. Zoroddu, M.A., Aaseth, J., Crisponi, G., Medici, S., Peana, M., Nurchi, V.M., 2019. The essential metals for humans: A brief overview. J. Inorg. Biochem. 195, 120-129. https://doi.org/10.1016/j.jinorgbio.2019.03.013
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-709d6b28-2ee9-482c-a267-71b3721e4135
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.