PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Variation of Precipitated Phase Investigated with the Usage of Nonlinear Ultrasonic Technique

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
It is well known that nonlinear ultrasound is sensitive to some microstructural characteristics in material. This paper investigates the dependence of the nonlinear ultrasonic characteristic on Al-Cu precipitation in heat-treated 2219-T6 aluminum alloy specimens. The specimens were heat-treated at a constant temperature 155℃ for different exposure times up to 1800 min. The nonlinearity parameter and the changes of precipitates phase were measured for each of the artificially aged specimens. The experimental results show fluctuations in the fractional change in nonlinear parameter (Δβ/β0) and the changes of precipitated phase over the aging time, but with an interesting correlation between the fractional change in nonlinear parameter (Δβ/β0) and the change of precipitate phase over the aging time. Through the experimental data results, the fractional change in nonlinear parameter (Δβ/β0) and the change of precipitate phase over the aging time were fitted curve. Microstructural observations confirmed that those fluctuations are due to the formation and evolution of precipitates that occur in a unique precipitation sequence in this alloy. These results suggest that the nonlinear ultrasonic measurement can be useful for monitoring second phase precipitation in the 2219-T6 aluminum alloy.
Rocznik
Strony
605--610
Opis fizyczny
Bibliogr. 29 poz., tab., wykr.
Twórcy
autor
  • Research Institute of Light Alloys, Central South University Changsha, 410083, China
  • Nonferrous Metal Oriented Advanced Structural Material and Manufacturing Cooperative Innovation Center Central South University Changsha, 410083, China
  • State Key Laboratory of High-Performance Complex Manufacturing Central South University, Changsha, 410083, China
autor
  • Research Institute of Light Alloys, Central South University Changsha, 410083, China
  • School of Mechanical and Electrical Engineering, Central South University Changsha, 410083, China
  • Nonferrous Metal Oriented Advanced Structural Material and Manufacturing Cooperative Innovation Center Central South University Changsha, 410083, China
  • State Key Laboratory of High-Performance Complex Manufacturing Central South University, Changsha, 410083, China
autor
  • Research Institute of Light Alloys, Central South University Changsha, 410083, China
  • School of Mechanical and Electrical Engineering, Central South University Changsha, 410083, China
  • Nonferrous Metal Oriented Advanced Structural Material and Manufacturing Cooperative Innovation Center Central South University Changsha, 410083, China
  • State Key Laboratory of High-Performance Complex Manufacturing Central South University, Changsha, 410083, China
Bibliografia
  • 1. Balasubramaniam K., Valluri J.S., Prakash R.V. (2011),Creep damage characterization using a low a-mplitude nonlinear ultrasonic technique, Materials Characterization, 62(3): 275-286, doi: 10.1016/j.matchar.2010.11.007.
  • 2. Benal M.M., Shivanand H.K. (2007), Effects of reinforcements content and ageing durations on wear characteristics of Al (6061) based hybrid composites, Wear, 262(5-6): 759–763, doi: 10.1016/j.wear.2006.08.022.
  • 3. Buha J., Lumley R.N., Crosky A.G., Hono K.(2007), Secondary precipitation in an AlMgSiCu alloy, Acta Materialia, 55(9): 3015–3024, doi: 10.1016/j.actamat.2007.01.006.
  • 4. Cantrell J.H., Yost W.T. (1997), Effect of precipitate coherency strains on acoustic harmonic generation, Journal of Applied Physics, 81(7): 2957–2962, doi: 10.1063/1.364327.
  • 5. Cantrell J.H., Yost W.T.(2000), Determination of precipitate nucleation and growth rates from ultrasonic harmonic generation, Applied Physics Letters, 77(13): 1952–1954, doi: 10.1063/1.1311951.
  • 6. Cantrell J.H., Zhang X.G.(1998), Nonlinear acoustic response from precipitatematrix misfit in a dislocation network, Journal of Applied Physics, 84(10): 5469–5472, doi: 10.1063/1.368309.
  • 7. Dace G.E., Thompson R.B., Brasche L.J.H., Rehbein D.K., Buck O. (1991) Nonlinear acoustics, a technique to determine microstructural changes in materials, [In:] Review of Progress in Quantitative Nondestructive Evaluation, Thompson D.O., Chimenti D.E. (Eds), Vol. 10B, pp. 1685–1692, Springer, Boston, MA, doi: 10.1007/9781461537427_71.
  • 8. Demir H., Gündüz S. (2009), The effects of aging on machinability of 6061 aluminium alloy, Materials & Design, 30(5): 1480–1483, doi: 10.1016/j.matdes.2008.08.007.
  • 9. Edwards G.A., Stiller K., Dunlop G.L., Couper M.J. (1998), The precipitation sequence in AlMgSi alloys, Acta Materialia, 46(11): 3893–3904, doi: 10.1016/S13596454(98)000597.
  • 10. Fang X., Song M., Li K., Du Y. (2010), Precipitation sequence of an aged AlMgSi alloy, Journal of Mining and Metallurgy B: Metallurgy, 46(2): 171–180, doi: 10.2298/JMMB1002171F.
  • 11. Granato A., Lüke K. (1956), Theory of mechanical damping due to dislocations, Journal of Applied Physics, 27(6): 583–593, doi: 10.1063/1.1722436.
  • 12. Hikata A., Chick B.B., Elbaum C. (1965), Dislocation Contribution to the Second Harmonic Generation of Ultrasonic Waves, Journal of Applied Physics, 36(1): 229–236, doi: 10.1063/1.1713881.
  • 13. Kim C.S., Jhang K.Y. (2012), Fatigueinduced microdamage characterization of austenitic stainless steel 316 using innovative nonlinear acoustics, Chinese Physics Letters, 29(6): 060702, doi: 10.1088/0256307x/29/6/060702.
  • 14. Kim J., Jhang K.Y. (2013), Evaluation of ultrasonic nonlinear characteristics in heattreated aluminum alloy (AlMgSiCu), Advances in Materials Science and Engineering, 2013: Article ID 407846, doi: 10.1155/2013/407846.
  • 15. Kim J., Song D.G., Jhang K.Y. (2016), Absolute measurement and relative measurement of ultrasonic nonlinear parameters, Research in Nondestructive Evaluation, 28(4): 211–225 doi: 10.1080/09349847.2016.1174322.
  • 16. Li P., Yost W.T., Cantrell J.H., Salama K. (1985), Dependence of acoustic nonlinearity parameter on second phase precipitates of aluminum alloys, IEEE 1985 Ultrasonics Symposium, pp. 1113–1115, doi: 10.1109/ULTSYM.1985.198690.
  • 17. Metya A., Ghosh M., Parida N., Sagar S.P. (2008), Higher harmonic analysis of ultrasonic signal for ageing behaviour study of C250 grade maraging steel, NDT & E International, 41(6): 484–489, doi: 10.1016/j.ndteint.2008.01.008.
  • 18. Miao W.F., Laughlin D.E. (1999), Precipitation hardening in aluminum alloy 6022, Scripta Materialia, 40(7): 873–878, doi: 10.1016/S13596462(99)000469.
  • 19. Mondal C., Mukhopadhyay A., Sarkar R. (2010), A study on precipitation characteristics induced strength variation by nonlinear ultrasonic parameter, Journal of Applied Physics, 108(12): 124910, doi: 10.1063/1.3524526.
  • 20. Ozturk F., Sisman A., Toros S., Kilic S., Picu R.C. (2010), Influence of aging treatment on mechanical properties of 6061 aluminum alloy, Materials & Design, 31(2): 972–975, doi: 10.1016/j.matdes.2009.08.017.
  • 21. Park J., Kim M., Chi B., Jang C. (2013), Correlation of metallurgical analysis & higher harmonic ultrasound response for long term isothermally aged and crept FM steel for USC TPP turbine rotors, NDT & E International, 54: 159–165, doi: 10.1016/j.ndteint.2012.10.008.
  • 22. Rajasekaran S., Udayashankar N.K., Nayak J. (2012), T4 and T6 treatment of 6061 Al15 Vol.% SiCP composite, ISRN Materials Science, 2012: 1–5, doi: 10.5402/2012/374719.
  • 23. Ren G., Kim J., Jhang K.Y. (2015), Relationship between second and thirdorder acoustic nonlinear parameters in relative measurement, Ultrasonics, 56: 539–544, doi: 10.1016/j.ultras.2014.10.009.
  • 24. Siddiqui R.A., Abdullah H.A., AlBelushi K.R. (2000), Influence of aging parameters on the mechanical properties of 6063 aluminium alloy, Journal of Materials Processing Technology, 102(1–3): 234–240, doi: 10.1016/S09240136(99)004768.
  • 25. Troeger L.P., Starke, Jr E.A. (2000), Microstructural and mechanical characterization of a superplastic 6xxx aluminum alloy, Materials Science and Engineering: A, 277(1–2): 102–113, doi: 10.1016/S09215093(99)005432.
  • 26. Viswanath A., Rao B.P.C., Mahadevan S., Parameswaran P., Jayakumar T., Raj B. (2011), Nondestructive assessment of tensile properties of cold worked AISI type 304 stainless steel using nonlinear ultrasonic technique, Journal of Materials Processing Technology, 211(3): 538–544, doi: 10.1016/j.jmatprotec.2010.11.011.
  • 27. Xiang Y., Deng M., Xuan F.Z. (2014), Thermal degradation evaluation of HP40Nb alloy steel after long term service using a nonlinear ultrasonic technique, Journal of Nondestructive Evaluation, 33: 279–287, doi: 10.1007/s1092101302228.
  • 28. Yassar R.S., Field D.P., Weiland H.(2011), Transmission electron microscopy and differential scanning calorimetry studies on the precipitation sequence in an AlMgSi alloy: AA6022, Journal of Materials Research, 20(10): 2705–2711, doi: 10.1557/JMR.2005.0330.
  • 29. You J., Wu Y.X., Gong H., Ahmad A.S, Lei Y.(2019), Determination of the influence of post heat treatment on secondphase of Al 2219T6 alloy using ultrasonic nonlinear measurement technique, Insight – NonDestructive Testing and Condition Monitoring, 61(4): 209–213, doi: 10.1784/insi.2019.61.4.209.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-709ac46d-9223-4a2c-8822-a29cc2b53d84
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.