PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improving Wastewater Quality System Using the Internet of Things-Based Phytoremediation Method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Water is an important part of all living things, including humans, animals, and plants, but concern for clean water is decreasing due to numerous human activities, which cause pollution. Water pollution is characterized by changes in physical, chemical and biological contents due to the wastes generated from the actions of living things, such as water irrigation. Therefore, this research aimed to overcome irrigation wastewater pollution using the Internet of Things (IoT)-based phytoremediation method, water hyacinth, apu-apu, and lotus. It was carried out using a tool monitoring system based on IoT technology with parameters for measuring pH, temperature, and water turbidity through the internet network. The results showed that the acidity level increased by 7–8 with a decrease in COD using water hyacinth, apu-apu, and lotus by 41.55%, 32.77%, and 32.91%, respectively. The BOD level using water hyacinth, as well as apu-apu and lotus decreased by 37.82%, and 31.54%, respectively. The decrease in phosphate level using water hyacinth, apu-apu and lotus was by 3.55%. Finally, the decrease in nitrate level using water hyacinth plants, apu-apu and lotus was 13.83%, 9.61% and 19.61%, respectively.
Rocznik
Strony
254--262
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
  • Departement of Civil Engineering, Universitas Islam Malang, Malang, East Java, Indonesia
  • Departement of Civil Engineering, Universitas Islam Malang, Malang, East Java, Indonesia
  • Departement of Civil Engineering, Universitas Islam Malang, Malang, East Java, Indonesia
  • Electrical Engineering, Universitas Negeri Malang, Jalan Semarang 5, Malang, Indonesia
Bibliografia
  • 1. Abdalla, K.Z., Hammam, G. 2014. Correlation between biochemical oxygen demand and chemical oxygen demand for various wastewater treatment plants in Egypt to obtain the biodegradability indices. International Journal of Sciences: Basic and Applied Research, 13(1), 42–48.
  • 2. Ali, S., Abbas, Z., Rizwan, M., Zaheer, I.E., Yavaş, I., Ünay, A., Abdel-Daim, M.M., Bin-Jumah, M., Hasanuzzaman, M., Kalderis, D. 2020. Application of floating aquatic plants in phytoremediation of heavy metals polluted water: A review. Sustainability, 12(5), 1927.
  • 3. Anam, M.M., Kurniati, E., Suharto, B. 2013. Penurunan kandungan logam Pb dan Cr leachate melalui fitoremediasi bambu air (Equisetum Hyemale) dan zeolit. Jurnal Keteknikan Pertanian Tropis Dan Biosistem, 1(2).
  • 4. Baklouti, I., Mansouri, M., Hamida, A.B., Nounou, H., Nounou, M. 2018. Monitoring of wastewater treatment plants using improved univariate statistical technique. Process Safety and Environmental Protection, 116, 287–300.
  • 5. Castiglioni, S., Thomas, K.V., Kasprzyk-Hordern, B., Vandam, L., Griffiths, P. 2014. Testing wastewater to detect illicit drugs: State of the art, potential and research needs. Science of the Total Environment, 487, 613–620.
  • 6. Daigavane, Vaishnavi V., Gaikwad, M.A. 2017. Water quality monitoring system based on IoT. Advances in Wireless and Mobile Communications, 10(5), 1107–1116.
  • 7. Damanik, M.O., Purwanti, I.F. 2018. Range Finding Test (RFT) cyperus rotundus l dan scirpus grossus sebagai penelitian pendahuluan dalam pengolahan limbah cair tempe. Jurnal Teknik ITS, 7(1), F161–F164.
  • 8. Deng, Y., Zhao, R. 2015. Advanced oxidation processes (AOPs) in wastewater treatment. Current Pollution Reports, 1(3), 167–176.
  • 9. Ghernaout, D. 2019. Aeration process for removing radon from drinking water – A review. Applied Engineering, 3(1), 32–45.
  • 10. Gobi, K., Mashitah, M.D., Vadivelu, V.M. 2011. Adsorptive removal of methylene blue using novel adsorbent from palm oil mill effluent waste activated sludge: Equilibrium, thermodynamics and kinetic studies. Chemical Engineering Journal, 171(3), 1246–1252.
  • 11. Gondchawar, N., Kawitkar, R.S. 2016. IoT based smart agriculture. International Journal of Advanced Research in Computer and Communication Engineering, 5(6), 838–842.
  • 12. Gumelar, D., Hendrawan, Y., Yulianingsih, R. 2015. Pengaruh aktivator dan waktu kontak terhadap kinerja arang aktif berbahan eceng gondok (Eichornia Crossipes) pada penurunan COD limbah cair laundry. Jurnal Keteknikan Pertanian Tropis Dan Biosistem, 3(1), 15–23.
  • 13. Gupta, N., Kushwaha, A.K., Chattopadhyaya, M.C. 2016. Application of potato (Solanum Tuberosum) plant wastes for the removal of methylene blue and malachite green dye from aqueous solution. Arabian Journal of Chemistry, 9, S707–S716.
  • 14. Güsewell, S. 2004. N: P ratios in terrestrial plants: Variation and functional significance. New Phytologist, 164(2), 243–266.
  • 15. Hamdan, M.A., Sublaban, E.T., Al-Asfar, J.J., Banisaid M.A. 2023. Wastewater treatment using activated carbon produced from oil shale. Journal of Ecological Engineering, 24(2), 131–139.
  • 16. Harrou, F., Dairi, A., Sun, Y., Senouci, M. 2018. Statistical monitoring of a wastewater treatment plant: A case study. Journal of Environmental Management, 223, 807–814.
  • 17. Hendrawati, T.D., Maulana, N., Al Tahtawi, A.R. 2019. Sistem pemantauan kualitas air sungai di kawasan industri berbasis WSN dan IoT. Jurnal Teknologi Rekayasa, 4(2), 283. https://doi.org/10.31544/jtera.v4.i2.2019.283-292
  • 18. Hu, H.-Y., Goto, N., Koichi Fujie, K. 1999. Concepts and methodologies to minimize pollutant discharge for zero-emission production. Water Science and Technology, 39(10–11), 9–16.
  • 19. Hussain, A., Priyadarshi, M., Shashikant Dubey, S. 2019. Experimental study on accumulation of heavy metals in vegetables irrigated with treated wastewater. Applied Water Science, 9(5), 1–11.
  • 20. Khaer, A., Nursyafitri, E. 2019. Kemampuan metode kombinasi filtrasi fitoremediasi tanaman teratai dan eceng gondok dalam menurunkan kadar BOD Dan COD air limbah industri tahu. Sulolipu: Media Komunikasi Sivitas Akademika Dan Masyarakat, 17(2), 11–18.
  • 21. Khatamian, M., Divband, B., Shahi, R. 2019. Ultrasound assisted co-precipitation synthesis of Fe3O4/bentonite nanocomposite: performance for nitrate, BOD and COD water treatment. Journal of Water Process Engineering, 31, 100870.
  • 22. Komala, R., Aziz, S. 2019. Pengaruh proses aerasi terhadap pengolahan limbah cair pabrik kelapa sawit di PTPN VII secara aerobik. Jurnal Redoks, 4(2), 7–16.
  • 23. Korostynska, O., Mason, A., Al-Shamma, A. 2012. Monitoring of nitrates and phosphates in wastewater: Current technologies and further challenges. International Journal on Smart Sensing and Intelligent Systems, 5(1), 149.
  • 24. Liang, C., Wang, Z., Bruell, C.J. 2007. Influence of PH on persulfate oxidation of TCE at ambient temperatures. Chemosphere, 66(1), 106–113.
  • 25. Mamonto, H. 2013. Uji potensi kayu apu (Pistia Stratiotes L) dalam penurunan kadar sianida (CN) pada limbah cair penambangan emas. Skripsi Tidak Dipublikasikan.
  • 26. Menberu, Z., Mogesse, B., Reddythota, D. 2021. Evaluation of water quality and eutrophication status of hawassa lake based on different water quality indices. Applied Water Science, 11(3), 1–10.
  • 27. Thani, M., Syuhada, N., Ghazi, R.M., Wahab, I.R.A, Amin, M.F.M., Hamzah, Z., Yusoff, N.R.N. 2020. Optimization of phytoremediation of nickel by alocasia puber using response surface methodology. Water, 12(10), 2707.
  • 28. Nehru, F. 2018. Penerapan IoT (Internet of Things) pada pengecekan level ketinggian air sungai berbasis arduino.
  • 29. Ng, Y.S., Chan, D.J.C. 2017. Wastewater phytoremediation by salvinia molesta. Journal of Water Process Engineering, 15, 107–115.
  • 30. Noerhayati, E., Mustika S.N., Mardiyani, S.A., Ingsih, I.S., Afroni, M.Y. 2022. Analysis of chlorophyll and carotenoids content in brassica chinensis plants using IoT-based sprinkle irrigation. Journal of Ecological Engineering, 23(9), 25–33.
  • 31. Oumani, A., Mandi, L, Berrekhis, F., Ouazzani, N. 2019. Removal of Cr3+ from tanning effluents by adsorption onto phosphate mine waste: Key parameters and mechanisms. Journal of Hazardous Materials, 378, 120718.
  • 32. Rafik, F., Saber, N., Halima, O.I., Douaik, A. 2023. The effects of the quality of irrigation water used on agricultural soils in Coastal Chaouia, Morocco. Journal of Ecological Engineering, 24(2), 50–60.
  • 33. Rahman, M.A., Hasegawa, H. 2011. Aquatic arsenic: phytoremediation using floating macrophytes. Chemosphere, 83(5), 633–646.
  • 34. Rahmawati, A. 2020. Pengolahan limbah cair domestik dengan tanaman eceng gondok (Eichornia Crassipes) untuk menghasilkan air bersih di perumahan green tombro kota Malang. Rekayasa Hijau: Jurnal Teknologi Ramah Lingkungan, 4(1), 1–8.
  • 35. Sadrishojaei, M., Navimipour, N.J., Reshadi, M., Hosseinzadeh, M. 2021. A new preventive routing method based on clustering and location prediction in the mobile internet of things. IEEE Internet of Things Journal, 8(13), 10652–10664.
  • 36. Serikbayeva, A., Taizhanova, L., Suleimenova, B., Altybaeva, Z., Seydalieva, L. 2023. Intensification of the wastewater treatment process of a bitumen plant with the production of recycled water. Journal of Ecological Engineering, 24(2), 295–301.
  • 37. Shyamala, S., Manikandan N.A., Pakshirajan, K., Tang, V.T., Rene, E.R., Park, H.-S., Behera, S.K. 2019. Phytoremediation of nitrate contaminated water using ornamental plants. Journal of Water Supply: Research and Technology-Aqua, 68(8), 731–743.
  • 38. Siregar, B., Menen, K., Efendi, S., Ulfi Andayani, and Fahmi Fahmi. 2017. Monitoring quality standard of waste water using wireless sensor network technology for smart environment. In: 2017 International Conference on ICT For Smart Society (ICISS), IEEE, 1–6.
  • 39. Suresh, B., Ravishankar, G.A. 2004. Phytoremediation – a novel and promising approach for environmental clean-up. Critical Reviews in Biotechnology, 24(2–3), 97–124.
  • 40. Trapp, S., Karlson, U. 2001. Aspects of phytoremediation of organic pollutants. Journal of Soils and Sediments, 1(1), 37–43.
  • 41. Yuliasni, R., Kurniawan, S.B., Marlena, B., Hidayat, M.R., Kadier, A., Ma, P.C., Imron, M.F. 2023. Recent progress of phytoremediation-based technologies for industrial wastewater treatment. Journal of Ecological Engineering, 24(2), 208–220.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-709a24ae-cc13-46a9-9a99-696c1abdd8f6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.