PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigations of the working process in a dual-fuel low-emission combustion chamber for an FPSO gas turbine engine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This investigation is devoted to an analysis of the working process in a dual-fuel low-emission combustion chamber for a floating vessel’s gas turbine. The low-emission gas turbine combustion chamber with partial pre-mixing of fuel and air inside the outer and inner radial-axial swirlers was chosen as the object of research. When modelling processes in a dualflow low-emission gas turbine combustion chamber, a generalized method is used, based on the numerical solution of the system of conservation and transport equations for a multi-component chemically reactive turbulent system, taking into consideration nitrogen oxides formation. The Eddy-Dissipation-Concept model, which incorporates Arrhenius chemical kinetics in a turbulent flame, and the Discrete Phase Model describing the interfacial interaction are used in the investigation. The obtained results confirmed the possibility of organizing efficient combustion of distillate liquid fuel in a low-emission gas turbine combustion chamber operating on the principle of partial preliminary formation of a fuel-air mixture. Comparison of four methods of liquid fuel supply to the channels of radial-axial swirlers (centrifugal, axial, combined, and radial) revealed the advantages of the radial supply method, which are manifested in a decrease in the overall temperature field non-uniformity at the outlet and a decrease in nitrogen oxides emissions. The calculated concentrations of nitrogen oxides and carbon monoxide at the flame tube outlet for the radial method of fuel supply are 32 and 9.1 ppm, respectively. The results can be useful for further modification and improvement of the characteristics of dual-fuel gas turbine combustion chambers operating with both gaseous and liquid fuels.
Rocznik
Tom
Strony
89--99
Opis fizyczny
Bibliogr. 35 poz., rys.
Twórcy
  • Admiral Makarov National University of Shipbuilding Geroes of Ukraine Ave., 9, 54025 Mikolayiv, Ukraine
  • Admiral Makarov National University of Shipbuilding Geroes of Ukraine Ave., 9, 54025 Mikolayiv, Ukraine
autor
  • Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233 Gdańsk, Poland
Bibliografia
  • 1. Offshore Technology (2018): Report: 55 FPSOs to start operations by 2022. Retrieved from https://www.offshore-technology. com/news/report-55-fpsos-start-operations-2022/.
  • 2. Offshore Magazine (2002): Leadon FPSO delivered on time, complete, within budget. Retrieved from https:// www.offshore-mag.com/production/article/16759844/ leadon-fpso-delivered-on-time-complete-within-budget.
  • 3. ENI (2016): Block 15-06 East Hub Development Project. Retrieved from https://www.eni.com/docs/en_IT/enicom/ publications-archive/publications/brochures-booklets/ countries/brochure_eni_angola_ese_web.pdf.
  • 4. Aker Floating Production (2009): FPSO Dhirubhai-1. Retrieved from http://www.akerfloatingproduction.com/s. cfm/3-12/FPSO-Dhirubhai-1-Operation.
  • 5. Cherednichenko O., Serbin S., Dzida M. (2019): Application of Thermo-Chemical Technologies for Conversion of Associated Gas in Diesel-Gas Turbine Installations for Oil and Gas Floating Units. Polish Maritime Research, 3(103), Vol. 26, 181–187.
  • 6. Cherednichenko O., Serbin S., Dzida M. (2019): Investigation of the Combustion Process in the Gas Turbine Module of an FPSO Operating on Associated Gas Conversion Products. Polish Maritime Research, 4(104), Vol. 26, 149–156.
  • 7. Domachowski Z., Dzida M. (2019): Applicability of Inlet Air Fogging to Marine Gas Turbine. Polish Maritime Research, 1(101), Vol. 26, 15–19.
  • 8. Burunsuz К.S., Kuklinovsky V.V., Serbin S.I. (2019): Investigations of the Emission Characteristics of a Gas Turbine Combustor with Water Steam Injection. Refrigeration Engineering and Technology, Vol. 55(2), 77–83.
  • 9. Lindman O., Andersson M., Persson M., Munktell E. (2014): Development of a Liquid Fuel Combustion System for SGT-750. In ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers Digital Collection.
  • 10. Malte P.C., Pratt D.T. (1975): Measurement of Atomic Oxygen and Nitrogen Oxides in Jet-Stirred Combustion. In Symposium (International) on Combustion, Vol. 15(1), 1061–1070.
  • 11. Stöhr M., Boxx I., Carter C.D., Meier W. (2012): Experimental Study of Vortex–flame Interaction in a Gas Turbine Model Combustor. Combustion and Flame, Vol. 159, 2636–2649.
  • 12. Aleiferis P.G., Serras-Pereira J., Romunde Z., Caine J., Wirth M. (2010): Mechanisms of Spray Formation and Combustion from a Multi-Hole Injector with E85 and Gasoline. Combustion and Flame, Vol. 157(4), 735–756.
  • 13. Hertel M., Tartsch D., Sattelmayer S. (2019): Ignition of Diesel Pilot Fuel in Dual-Fuel Engines. Journal of Engineering for Gas Turbines and Power, doi: 141.10.1115/1.4043485.
  • 14. Ibrahim I.A., Shabaan M.M., Shehata M.A., Farag T.M. (2014): Investigation of Dual-Fuel Combustion Characteristics inside a Gas Turbine. Combustor International Conference on Machine Learning, Electrical and Mechanical Engineering (ICMLEME’2014). Dubai (UAE). Retrieved from: http://iieng. org/images/proceedings_pdf/2853E0114035.pdf.
  • 15. Kurji H. (2017): Fuel Flexibility with Low Emissions for Gas Turbine Engines, PhD thesis, Cardiff University.
  • 16. Matveev I., Serbin S., Mostipanenko A. (2007): Numerical Optimization of the “Tornado” Combustor Aerodynamic Parameters. Collection of Technical Papers – 45th AIAA Aerospace Sciences Meeting, Reno, Nevada, AIAA 2007-391, Vol. 7, 4744–4755.
  • 17. Matveev I.B., Serbin S.I., Vilkul V.V., Goncharova N.A. (2015): Synthesis Gas Afterburner Based on an Injector Type PlasmaAssisted Combustion System. IEEE Transactions on Plasma Science, Vol. 43(12), 3974–3978.
  • 18. Serbin S.I. (1998): Modeling and Experimental Study of Operation Process in a Gas Turbine Combustor with a Plasma-Chemical Element. Combustion Science and Technology, Vol. 139, 137–158.
  • 19. Matveev I., Matveeva S., Serbin S. (2007): Design and Preliminary Result of the Plasma Assisted Tornado Combustor. 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Collection of Technical Papers, Cincinnati, OH, AIAA 2007- 5628, Vol. 6, 6091–6098.
  • 20. Matveev I., Serbin S. (2006): Experimental and Numerical Definition of the Reverse Vortex Combustor Parameters. 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, AIAA-2006-0551, 1–12.
  • 21. Serbin, S.I., Matveev, I.B., Mostipanenko, G.B. (2011): Investigations of the Working Process in a “Lean-Burn” Gas Turbine Combustor with Plasma Assistance. IEEE Trans. Plasma Sci., Vol. 39(12), 3331–3335.
  • 22. Launder B.E., Spalding D.B. (1972): Lectures in Mathematical Models of Turbulence. London: Academic Press, 327.
  • 23. Choudhury D. (1993): Introduction to the Renormalization Group Method and Turbulence Modeling. Fluent Inc. Technical Memorandum TM-107.
  • 24. Magnussen B.F. (1981): On the Structure of Turbulence and a Generalized Eddy Dissipation Concept for Chemical Reaction in Turbulent Flow. Nineteenth AIAA Meeting, St. Louis, 1–7.
  • 25. Pope S.B. (1997): Computationally efficient implementation of combustion chemistry using in-situ adaptive tabulation. Combustion Theory and Modeling, Vol. 1, 41–63.
  • 26. Wang F., Huang Y., Deng T. (2009): Gas Turbine Combustor Simulation with Various Turbulent Combustion Models. Proceedings of ASME Turbo Expo 2009: Power for Land, Sea and Air GT2009, 1–11.
  • 27. Benim A.C., Iqbal S., Meier W., Joos F., Wiedermann A. (2017): Numerical Investigation of Turbulent Swirling Flames with Validation in a Gas Turbine Model Combustor. Applied Thermal Engineering, Vol. 110(2), 202–212.
  • 28. Abou-Taouk A., Sigfrid I.R., Whiddon R., Eriksson L.E. (2012): A Four-Step Global Reaction Mechanism for CFD Simulations of Flexi-Fuel Burner for Gas Turbines. Proceedings of the 17th International Symposium on Turbulence, Heat and Mass Transfer Palermo, Italy, 1–12.
  • 29. Novosselov I.V., Malte P.C. (2007): Development and Application of an Eight-Step Global Mechanism for CFD and CRN Simulations of Lean-Premixed Combustors. Proceedings of GT2007 ASME Turbo Expo 2007: Power for Land, Sea and Air, 1–11.
  • 30. Faeth G.M. (1979): Spray Combustion Models: A Review, AIAA Paper (293), 1–18.
  • 31. James S., Anand M., Pope S. (2002): The Lagrangian PDF Transport Method for Simulations of Gas Turbine Combustor Flows. In 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 4017.
  • 32. Romanovsky G.F., Serbin S.I., Patlaychuk V.M. (2005): Modern Gas Turbine Units of Russia and Ukraine. Vol. 1, Mikolayiv: NUK, 344 (in Ukrainian).
  • 33. Gatsenko N.A., Serbin S.I. (1995): Arc Plasmatrons for Burning Fuel in Industrial Installations. Glass and Ceramics, Vol. 51(11/12), 383–386.
  • 34. Serbin S.I., Matveev I.B., Goncharova N.A. (2014): Plasma Assisted Reforming of Natural Gas for GTL. Part I. IEEE Transactions on Plasma Science, Vol. 42(12), 3896–3900.
  • 35. Directive 2010/75/EU of the European Parliament and of the Council of 24 November on Industrial Emissions (Integrated Pollution Prevention and Control) (2010): Official Journal of the European Union. Retrieved from https://eur-lex.europa. eu/legal-content/EN/TXT/?uri=CELEX%3A32010L0075.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7095aa77-9a82-4ccb-8231-b344dd6e93c4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.