PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reliability in micro-manufacturing - case studies and optimization strategies

Autorzy
Identyfikatory
Warianty tytułu
DE
Zuverlässigkeit in der Produktion für die Mikrotechnik - fallstudien und Optimierungsstrategien
Języki publikacji
EN
Abstrakty
EN
Micro-manufacturing methods are increasingly applied for the production of miniaturized components as well as of micro-sized geometrical features on conventionally sized products in economically and socially high relevant sectors. The individual techniques can be categorized into Micro-Electrochemical Systems (MEMS)-based process-es, and non-MEMS-based techniques. Traditional MEMS-based manufacturing is performed in volume production since many years. Non-MEMS manufacturing technologies, however, were predominantly developed during recent years by scaling down manufacturing processes for conventionally sized components. In particular, for the application of non-MEMS technologies in volume production, the miniaturization is associated with size-effects, which in many cases increase the scattering of process parameters and influence with this crucially production reliability. The paper provides a survey of cur-rently applied strategies to optimize reliability and process stability in production with an emphasis on non-MEMS technologies for micro-manufacturing.
DE
Die Produktion von Bauteilen und Strukturen für die Mikrotechnik gewinnt zunehmend an Bedeutung. Neben den seit Langem in der Serienfertigung eingesetzten und etablierten MEMS-basierten Technologien (MEMS: Micro-Electrochemical Systems), werden seit einigen Jahren in zunehmendem Maße Verfahren entwickelt, die auf einer Übertragung konventioneller Fertigungsverfahren vom Makro- auf den Mikro-Maßstab aufbauen. Schwierigkeiten treten hierbei durch sogenannte Skalierungseffekte auf, die sich durch vergleichsweise hohen Streuungen von Prozessparametern bemerkbar machen, die sich mit der technischen Zuverlässigkeit des Produktionssystems überlagern. Der vorliegende Beitrag gibt einen Überblick über den derzeitigen Stand der Technik im Umgang mit der Zuverlässigkeit und Prozessstabilität in der Fertigung für die Mikrotechnik mit skalierten Fertigungsverfahren.
Słowa kluczowe
Rocznik
Tom
Strony
83--92
Opis fizyczny
Bibliogr. 50 poz., rys., wykr.
Twórcy
autor
  • Faculty of Automotive Systems Eng. and Production Eng., TH Köln
autor
  • Faculty of Automotive Systems Eng. and Production Eng., TH Köln
Bibliografia
  • [1] Spath D., Ganschar O., Gerlach S., Hämmerle M., Krause T., Schlund S.: Produktionsarbeit der Zukunft-Industrie 4.0. Fraunhofer Verlag, Stuttgart, 2013,
  • [2] Bracke S., Hinz M., Inoue M., Pateli E., Kutz S., Gottschalk H., Ulutas B., Hartl C., Mörs P., Bonnaud P.: Reliability engineering on face of shorten product life cycles: Challenges, technique trends and method approaches to ensure reliability. Proc. of Conf. Europ.Safety and Reliability, Glasgow, 25.-29. September 2016,
  • [3] Qin Y.: Micromanufacturing Engineering and Technology. 2nd ed., William Andrew, Oxford, 2015,
  • [4] FassiI., Shipley D.: Micro-manufacturing technologies and their application. Berlin, Springer Int. Publ., Cham, 2017,
  • [5] N.N.: IVAM Survey 2017 - Europe’s microtechnology is attuned to growth. IVAM Microtechnology Network, Dortmund, 2017,
  • [6] Mounier E.: Futureof MEMS: a market and technologies perspective. Yole Developments, MEMT Tech Seminar 2014, Oct 2014,
  • [7] Qin Y., Brockett A., Ma Y., Razali A., Zhao J., Harrison C.S., Pan W., Dai X., Loziak D.: Micro-manufacturing: research, technology outcomes and development issues, Int. J. Adv. Manuf. Technol. 47 (2010), pp. 821-837,
  • [8] Vollertsen F., Niehoff H.S., Hu Z.: State of the art in micro forming. Int. J. Machine Tools and Manufacture 46 (2006), pp. 1172-1179,
  • [9] Engel U., Eckstein R.: Microforming - from basic research to its realization. J. Mater. Process. Technol. 125-126 (2002), pp. 35-44,
  • [10] Fu M.W., Chan W.L.: A review on the state-of-the-art microforming technologies. Int. J. Adv. Manuf. Tech. 67 (2013), pp. 2411-2437,
  • [11] Masuzawa T.: State of the Art of Micromachining. CIRP Annals - Manufacturing Technology 49 (2000), 4, pp. 73-488,
  • [12] Dornfeld D., Min S., Takeuchi Y.: Recent Advances in Mechanical Micromachining. CIRP Annals - Manufacturing Technology. 55 (2006), pp. 745-768,
  • [13] Heckele M., Schomburg W.: Review on micro molding of thermoplastic polymers. J. Micromech. Microeng. 14 (2004), pp. R1-R14,
  • [14] Giboz J., Copponnex T., Mélé P.: Microinjection molding of thermoplastic polymers: a review. J. Micromech. Microeng. 17 (2007), pp. R96-R109,
  • [15] Liu Z.Y., Loh N.H., Tor S.B., Khor K.A., Murakoshi Y., Maeda R., Shimizu T.: Micro-powder injection molding. J Mat. Proc. Technol. 127 (2002), pp. 165-168,
  • [16] Attia U.M., Alcock J.R.: A review of micro-powder injection moulding as a microfabrication technique. J. Micromech. Microeng. 21 (2011),
  • [17] Scholz S., Mueller T., Plasch M., Limbeck H., Adamietz R., Iseringhausen T., Kimmig D., Dickerhof M., Woegerer C.: A modular flexible scalable and reconfigurable system for manufacturing of microsystems based on additive manufacturing and e-printing. Rob. Comp.-Integr.Manuf. 40 (2016), pp. 14–23,
  • [18] Edgar T.F., Butler S.W., Campbell W.J., Pfeiffer C., Bode C., Hwang S.B., Balakrishnan K.S., Hahn J.: Automatic control in microelectronics manufacturing: Practices, challenges, and possibilities. Automatica 36 (2000), pp.1567-1603,
  • [19] Fu M.W., Wang J.L., Korsunsky A.M.: A review of geometrical and microstruc-tural size effects in micro-scale deformation processing of metallic alloy components. Int. J. Machine Tools Manuf. 109 (2016), pp. 94–125,
  • [20] Vollertsen F., Biermann D., Hansen H.N., Jawahir I.S., Kuzman K.: Size effects in manufacturing of metallic components. CIRP Annals 58 (2009), pp. 566-587,
  • [21] Lotter B., Wiendahl H.-W.: Montage in der industriellen Produktion. Springer Vieweg, Berlin, 2012,
  • [22] Ahuja I.P.S., Khamba J.S.: Total productive maintenance: literature review and directions. Int. J. Quality & Reliability Manag. 25 (2008) 7, pp. 709-756,
  • [23] Jin X., Siegel D., Weiss B.A., Gamel E., Wang W., Lee J., Ni J.: The present status and future growth of maintenance in US manufacturing: results from a pilot survey. Manufacturing Rev. 3 (2016) 10,
  • [24] Wireman T.: Total Productive Maintenance – An American Approach, Industrial Press Inc., New York, 1990,
  • [25] Herbaty F.: Handbook of Maintenance Management: Cost Effective Practices, 2nd ed., Noyes Publications, Park Ridge, NJ, 1990,
  • [26] Vanzile D., OtisI.: Measuring and controlling machine performance, in Salvendy, G. (Ed.), Handbook of Industrial Engineering, John Wiley, New York, 1992,
  • [27] Steinbacher H.R., Steinbacher N.L.: TPM for America, Productivity Press, Portland, OR, 1993,
  • [28] Dekker R.: Applications of maintenance optimization models: a review and analysis. Reliability Engineering and System Safety, 51 (1996), pp. 229-240,
  • [29] Wakaru Y.: TPM for Every Operator. in JIPM (Ed.), Productivity Press, Portland, OR, 1988,
  • [30] Bhadury B.: Management of productivity through TPM. Productivity 41 (2000) 2, pp. 240-251,
  • [31] Nakajima S., O’Shima E., Kyokai N.P.M.: TPM: total productive maintenance encyclopedia. Japan Inst. of Plant Maintenance (JIPM), Tokyo, Atlanta, Ga, 1996,
  • [32] Haddad G., Sandborn P., Pecht M.: An options approach for decision support of systems with prognostic capabilities. IEE Transactions on Reliablity, 61 (2012) 4,
  • [33] Guillén A.J.,González-Prida V., Gómez J.F., Crespo A.: Standards as Reference to Build a PHM-Based Solution. Proceedings of the 10th World Congress on Engineering Asset Management WCEAM 2015, Springer International Publishing, Switzerland, 2016,
  • [34] Stavropoulos P., Chantzis D., Doukas C., Papacharalampopoulos A., Chryssolouris G.: Monitoring and control of manufacturing processes: A review. Procedia CIRP 8 (2013), pp. 421-425,
  • [35] Goyal D., Pabla B.S.: Condition based maintenance of machine tools - A review. CIRP J. Manuf. Sc. Technol. 10 (2015), pp. 24-35,
  • [36] Denkena B., Dahlmann D., Damm J.: Self-adjusting Process Monitoring System in Series Production. Procedia CIRP 33 (2015), pp. 233-238,
  • [37] Peng Y., Dong M., Zuo M.J.: Current status of machine prognostics in condition-based maintenance: A review, Int. J. Adv. Manuf. Technol. 50 (2010), pp. 297-313,
  • [38] Gao R., Wang L., Teti R., Dornfeld D., Kumara S., Mori M., Helu M.: Cloud-enabled prognosis for manufacturing, CIRP Annals-Manuf. Technol. 64 (2015), pp. 749-772,
  • [39] Mourtzisa D., Vlachoua E., Milasa N., Xanthopoulosa N.: A cloud-based approach for maintenance of machine tools and equipment based on shop-floor monitoring. Procedia CIRP 41 (2016), pp. 655-660,
  • [40] Larizza P.: Measurement, testing and diagnosis for micro-manufacturing systems. In: Micromanufacturing Engineering and Technology, Y. Qin (Ed.), 2nd ed., William Andrew, Oxford, 2015, pp. 675-704,
  • [41] Lanza G., Fleischer J., Schlipf M.: Statistical process and measurement control for micro production. Mikrosyst. Technol. 14 (2008), pp. 1227-1232,
  • [42] Vollertsen F.: Categories of size effects. Prod. Eng. Res. Devel. (2008) 2, pp. 377-383,
  • [43] Vollertsen F., Schulze Niehoff H., Hu Z.: State of the art in micro forming. Int. J. Machine Tools Manuf. 46 (2006), pp. 1172-1179,
  • [44] Hoffmann H., Hong S.: Tensile tests of very thin sheet metal and determination of flow stress considering the scaling effect. Annals CIRP 55 (2006) 1, pp. 263-266,
  • [45] Qin Y., Zhao J., Anyasodor G., Hansen K.S., Calderon I., Konrad K., Hartl C., Arentoft M., Chronakis I.S.: Forming of tubular micro-components. In: Micromanufacturing Engineering and Technology, Y. Qin (Ed.), 2nd ed., William Andrew, Oxford, 2015, pp. 179-200,
  • [46] Wang C., Guo B., Shan D.: Friction related size-effect in microforming – a review. Manufacturing Rev. 1 (2014) 23, 92
  • [47] Schulze V., Weber P., Ruhs C.: Increase of process reliability in the micro-machining processes EDM-milling and laser ablation using on-machine sensors. J. Mater. Process. Technol. 212 (2012), pp. 625–632,
  • [48] Packianather M., Chan F., Griffiths C., Dimov S., Pham D.T.: Optimisation of micro injection moulding process through design of experiments. Procedia CIRP 12 (2013), pp. 300-305,
  • [49] Hartl C., Chlynin A., Radetzky M.: The influence of axial compressive stresses on the formability and scattering of process parameters in micro-hydroforming processes of tubes. Proceeding of 4th International Conference on New Forming Technology, Glasgow, UK, 6.-9. August 2015, pp. 06001-p1-p7,
  • [50] Hartl C.: Micro-hydroforming. In: Micromanufacturing Engineering and Technology, Y. Qin (Ed.), 2nd ed., William Andrew, Oxford, 2015, pp. 323-345.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-708feca0-5b96-4081-ab78-9adbbe88c343
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.