PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Current societies undergo a transformation into information societies. ‘‘Digitialization’’ is progressing in every aspect of life, including health care. Handling the increasing flow of biomedical data presents a serious challenge to researchers and clinicians. Ontologies – controlled vocabularies that allow describing the meaning of data (its semantics) in a human and machine readable way are used more and more often to aid processing of information in biomedical research and in healthcare systems. The aim of this work is to bring closer the field of ontologies to the medical society. The theoretical basics are presented and exemplified with a range of ontologies used for describing diseases, medications, proteins, experimental procedures, etc. Currently the multitude of ontologies is an obstacle in further data integration. Unified Medical Language System (UMLS) and OBO Foundry (Open Biomedical Ontologies) are projects started to counteract this problem. UMLS aims at merging existing vocabularies, while OBO initiative is based on coordinated, harmonic development of new ontologies and reformation of existing ones. The pros and cons of both philosophies are presented. The final section of the article features examples of ontology applications.
Twórcy
  • Institute of Biomedical Engineering and Instrumentation, Wroclaw University of Technology, Wybrzeże St. Wyspianskiego 27, 50-370 Wroclaw, Poland
Bibliografia
  • [1] Chandrasekaran B, Josephson JR, Benjamins VR. What are ontologies, and why do we need them? IEEE Intell Syst Appl 1999;(March/April):20–6.
  • [2] Moore B, Fan G, Eilbeck K. SOBA: sequence ontology bioinformatics analysis. Nucl Acids Res 2010;38(Web server issue):W161–4.
  • [3] Badaa M, Stevens R, Goble C, Gil Y, Ashburner M, Blake JA, et al. A short study on the success of the gene ontology. Web Semant Sci Serv Agents World Wide Web 2004;1 (2):235–40.
  • [4] Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009;4(1):44–57.
  • [5] Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. Nat Genet 2000;25(1):25–9.
  • [6] Rubin DL, Lewis SE, Mungall CJ, Misra S, Westerfield M, Ashburner M, et al. National Center for Biomedical Ontology: advancing biomedicine through structured organization of scientific knowledge. OMICS 2006;10(2):185–98.
  • [7] Musen MA, Noy NF, Shah NH, Whetzel PL, Chute CG, Story MA, et al. The National Center for biomedical ontology. J Am Med Inform Assoc 2012;19(2):190–5.
  • [8] Côté R, Reisinger F, Martens L, Barsnes H, Vizcaino JA, Hermjakob H. The Ontology Lookup Service: bigger and better. Nucleic Acids Res 2010;38(Web server issue): W155–60.
  • [9] Smith B, Ashburner M, Rosse C, Bard J, Bug W, Ceusters W, et al. The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration. Nat Biotechnol 2007;25(11):1251–5.
  • [10] Guarino N. Formal ontology in information systems. Proceedings of FOIS'98. Amsterdam: IOS Press; 1998. p. 3–15.
  • [11] Gruber TR. Toward principles for the design of ontologies used for knowledge sharing. Int J Hum Comput Stud 1995;907–28.
  • [12] Borst W. Construction of engineering ontologies for knowledge sharing and reuse. University of Twente; 1997 [thesis].
  • [13] Genesereth MR, Nilsson NJ. Logical foundations of artificial intelligence. Los Altos, CA: Morgan Kaufmann Publishers; 1987.
  • [14] Maedche A, Staab S. Ontology learning for the semantic web. IEEE Intell Syst Arch 2001;6(2):72–9.
  • [15] Kulikowski JL. Logical inference based on incomplete and/ or fuzzy ontologies. In: Król D, Nguyen NT, editors. Intelligence integration in distributed knowledge management. Hershey, New York: Information Science Reference; 2009.
  • [16] Van Heijst G, Schreiber A.Th., Wielinga BJ. Using explicit ontologies in KBS development. Int J Hum Comput Stud 1997;183–292.
  • [17] Gómez-Pérez A, Fernández-López M, Corcho O. Ontology engineering. Springer; 2004 [chapter I].
  • [18] Mizoguchi R, Vanwelkenhuysen J. Task ontology for reuse of problem solving knowledge. KB&KS 1995;46–59.
  • [19] Arpírez JC, Gómez-Pérez A, Lozano A, Pinto HS. (ONTO)2 agent: an ontology-based WWW broker to select ontologies; 1998.
  • [20] World Health Organization. ICD-10: international statistical classification of diseases and related health problems: tenth revision. 2nd ed. 2004.
  • [21] Pesquita C, Faria D, Falcão AO, Lord P, Couto FM. Semantic similarity in biomedical ontologies. PLoS Comput Biol 2009;5(7):e1000443.
  • [22] Waniewski E. Snomed – usystematyzowana nomenklatura medyczna. Centrum Systemów Informacyjnych Ochrony Zdrowia; 2001.
  • [23] Carter JS, Brown SH, Bauer BA, Elkin PL, Erlbaum MS, Froehling DA, et al. Categorical information in pharmaceutical terminologies. AMIA Annu Symp Proc. 2006. pp. 116–20.
  • [24] Soldatova LN, Aubrey W, King RD, Clare A. The EXACT description of biomedical protocols. Bioinformatics 2008;24 (13):i295–303.
  • [25] UniProt Consortium. Reorganizing the protein space at the Universal Protein Resource (UniProt). Nucleic Acids Res 2012;40:D71–5.
  • [26] Rosse C, Mejino JVL. A reference ontology for biomedical informatics: the Foundational Model of Anatomy. J Biomed Inform 2003;36:478–500.
  • [27] Hastings J, de Matos P, Dekker A, Ennis M, Harsha B, Kale N, et al. The ChEBI reference database and ontology for biologically relevant chemistry: enhancements for 2013. Nucleic Acids Res 2013;41(database issue): D456–63.
  • [28] Gkoutos GV, Green EC, Mallon AM, Hancock JM, Davidson D. Using ontologies to describe mouse phenotypes. Genome Biol 2005;6(1):R8.
  • [29] Brinkman RR, Courtot M, Derom D, Fostel JM, He Y, Lord P, et al. Modeling biomedical experimental processes with OBI. J Biomed Semant 2010;(Suppl. 1):S7.
  • [30] Møller H, Sandin F, Robinson D, Bray F, Klint S, Linklater KM, et al. Colorectal cancer survival in socioeconomic groups in England: variation is mainly in the short term after diagnosis. Eur J Cancer 2012;48(January (1)):46–53. http://dx.doi.org/10.1016/j.ejca.2011.05.018 [Epub 14.06.11].
  • [31] Morris EJ, Sandin F, Lambert PC, Bray F, Klint A, Linklater K, et al. A population-based comparison of the survival of patients with colorectal cancer in England, Norway and Sweden between 1996 and 2004. Gut 2011;60(August (8)):1087–93. http://dx.doi.org/10.1136/gut.2010.229575 [Epub 08.02.11].
  • [32] Coleman MP, Forman D, Bryant H, Butler J, Rachet B, Maringe C, et al. Cancer survival in Australia, Canada, Denmark, Norway, Sweden, and the UK, 1995–2007 (the International Cancer Benchmarking Partnership): an analysis of population-based cancer registry data. Lancet 2011;377(9760):127–38. http://dx.doi.org/10.1016/S0140-6736(10)62231-3 [Epub 08.01.10].
  • [33] Li J, Precht DH, Mortensen PB, Olsen J. Mortality in parents after death of a child in Denmark: a nationwide follow-up study. Lancet 2003;361(February (9355)):363–7.
  • [34] Li J, Johansen C, Hansen D, Olsen J. Cancer incidence in parents who lost a child: a nationwide study in Denmark. Cancer 2002;95(November (10)):2237–42.
  • [35] Halonen JI, Lanki T, Yli-Tuomi T, Kulmala M, Tiittanen P, Pekkanen J. Urban air pollution, and asthma and COPD hospital emergency room visits. Thorax 2008;63(July (7)):635–41. http://dx.doi.org/10.1136/thx.2007.091371 [Epub 11.02.08].
  • [36] Purdy S, Griffin T, Salisbury C, Sharp D. Ambulatory care sensitive conditions: terminology and disease coding need to be more specific to aid policy makers and clinicians. Public Health 2009;123(February (2)):169–73. http://dx.doi.org/10.1016/j.puhe.2008.11.001 [Epub 13.01.09].
  • [37] Shah NH, Jonquet C, Chiang AP, Butte AJ, Chen R, Musen MA. Ontology-driven indexing of public datasets for translational bioinformatics. BMC Bioinform 2009;10 (February (Suppl. 2)):S1. http://dx.doi.org/10.1186/1471-2105-10-S2-S1.
  • [38] Zhu Q, Freimuth RR, Pathak J, Chute CG. Using clinical element models for pharmacogenomic study data standardization. AMIA Summits Transl Sci Proc; 2013. pp. 292–6 [eCollection 2013].
  • [39] Hersh W, Mailhot M, Arnott-Smith C, Lowe H. Selective automated indexing of findings and diagnoses in radiology reports. J Biomed Inform 2001;34(August (4)):262–73.
  • [40] Lee DH, Lau FY, Quan H. Method for encoding clinical datasets with SNOMED CT. BMC Med Inform Decis Mak 2010;10(September):53. http://dx.doi.org/10.1186/1472-6947-10-53.
  • [41] Brown SH, Rosenbloom ST, Bauer BA, Wahner-Roedler D, Froehling DA, Bailey KR, et al. Direct comparison of MEDCIN and SNOMED CT for representation of a general medical evaluation template. AMIA Annu Symp Proc; 2007. pp. 75–9.
  • [42] Zhu Q, Freimuth RR, Pathak J, Durski MJ, Chute CG. Disambiguation of PharmGKB drug-disease relations with NDF-RT and SPL. J Biomed Inform 2013;46(August (4)):690–6. http://dx.doi.org/10.1016/j.jbi.2013.05.005 [Epub 29.05.13].
  • [43] Zhu Q, Jiang G, Chute CG. Profiling structured product labeling with NDF-RT and RxNorm. J Biomed Semant 2012;3 (December (1)):16. http://dx.doi.org/10.1186/2041-1480-3-16.
  • [44] Schadow G. Structured product labeling improves detection of drug-intolerance issues. J Am Med Inform Assoc 2009;16 (March/April (2)):211–9. http://dx.doi.org/10.1197/jamia.M2933 [Epub 24.10.08].
  • [45] Dimmer EC, Huntley RP, Alam-Faruque Y, Sawford T, O'Donovan C, Martin MJ, et al. The UniProt-GO Annotation database in 2011. Nucleic Acids Res 2012;40(January (database issue)):D565–70. http://dx.doi.org/10.1093/nar/gkr1048 [Epub 28.11.11].
  • [46] Gutmanas A, Alhroub Y, Battle GM, Berrisford JM, Bochet E, Conroy MJ, et al. PDBe: Protein Data Bank in Europe. Nucleic Acids Res 2014;42(January (database issue)):D285–91. http://dx.doi.org/10.1093/nar/gkt1180 [Epub 27.11.13].
  • [47] Haugen AC, Di Prospero NA, Parker JS, Fannin RD, Chou J, Meyer JN, et al. Altered gene expression and DNA damage in peripheral blood cells from Friedreich's ataxia patients: cellular model of pathology. PLoS Genet 2010;6(1):e1000812.
  • [48] Warita K, Mitsuhashi T, Tabuchi Y, Ohta K, Suzuki S, Hoshi N, et al. Microarray and gene ontology analyses reveal downregulation of DNA repair and apoptotic pathways in diethylstilbestrol-exposed testicular Leydig cells. J Toxicol Sci 2012;37(2):287–95.
  • [49] Gruca A, Sikora M, Polanski A. RuleGO: a logical rules-based tool for description of gene groups by means of Gene Ontology. Nucleic Acids Res 2011;39(July (Web server issue)):W293–301. http://dx.doi.org/10.1093/nar/gkr507.
  • [50] Huang da W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 2009;37(1):1–13.
  • [51] Pascual-García A, Abia D, Méndez R, Nido GS, Bastolla U. Quantifying the evolutionary divergence of protein structures: the role of function change and function conservation. Proteins 2010;78(1):181–96.
  • [52] Hvidsten TR, Laegreid A, Kryshtafovych A, Andersson G, Fidelis K, Komorowski J. A comprehensive analysis of the structure–function relationship in proteins based on local structure similarity. PLoS ONE 2009;4(7):e6266.
  • [53] Konopka BM, Nebel JC, Kotulska M. Quality assessment of protein model-structures based on structural and functional similarities. BMC Bioinform 2012;13:242.
  • [54] Pathak J, Wang J, Kashyap S, Basford M, Li R, Masys DR, et al. Mapping clinical phenotype data elements to standardized metadata repositories and controlled terminologies: the eMERGE Network experience. J Am Med Inform Assoc 2011;18(July/August (4)):376–86. http://dx.doi.org/10.1136/amiajnl-2010-000061. [Epub 19.05.11].
  • [55] Kim TY, Hardiker N, Coenen A. Inter-terminology mapping of nursing problems. J Biomed Inform 2014;(March). http://dx.doi.org/10.1016/j.jbi.2014.03.001. pii:S1532-0464(14) 00058-6 [Epub ahead of print].
  • [56] Jiang G, Solbrig HR, Chute CG. Quality evaluation of value sets from cancer study common data elements using the UMLS semantic groups. J Am Med Inform Assoc 2012;19 (June (e1)):e129–36 [Epub 17.04.12].
  • [57] Aronson AR. Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program. Proc AMIA Symp. 2001. pp. 17–21.
  • [58] Friedman C, Shagina L, Lussier Y, Hripcsak G. Automated encoding of clinical documents based on natural language processing. J Am Med Inform Assoc 2004;11(September/ October (5)):392–402 [Epub 07.06.04].
  • [59] Kang N, Singh B, Bui C, Afzal Z, van Mulligen EM, Kors JA. Knowledge-based extraction of adverse drug events from biomedical text. BMC Bioinform 2014;15(March):64. http://dx.doi.org/10.1186/1471-2105-15-64.
  • [60] Leroy G, Chen HC, Genescene:. An ontology-enhanced integration of linguistic and co-occurrence based relations in biomedical texts. J Am Soc Inform Sci Technol 2005;56 (5):457–68.
  • [61] Leroy G, Chen HC. Meeting medical terminology needs – the Ontology-enhanced Medical Concept Mapper. IEEE Trans Inf Technol Biomed 2001;5(December (4)):261–70.
  • [62] Martinez D, Otegi A, Soroa A, Agirre E. Improving search over Electronic Health Records using UMLS-based query expansion through Random Walks. J Biomed Inform 2014; (April). http://dx.doi.org/10.1016/j.jbi.2014.04.013. pii:S1532-0464(14) 00098-7 [Epub ahead of print].
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-708a9812-3e0a-4bbf-be99-aa7c5a554657
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.