Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper research on the development of the fiber Bragg grating (FBG) technology which has been conducted at the Institute of Electronic Systems (IES), Warsaw University of Technology (WUT) since 2004 is presented. In particular the directions in the development of advanced set-ups employing the phase mask inscription scheme are discussed and supported with the descriptions of structures designed and fabricated with the use of the laboratory stages constructed at the IES. The novelty of the presented solutions is based on the combination of numerous techniques of the external modification of the interferometric patterns (projected onto cores of photosensitive fibers to modulate their refractive index) as well as application of the modification of the internal properties of the waveguides themselves by the means of introducing strain or tapering. The development of these sophisticated set-ups resulted in the inscription of FBGs with precisely designed spectral characteristics which found application in telecommunications and sensor technology are also illustrated here. The paper is summarized with the specification of the most important achievements attained at the lab and drafting of the possible directions of further research.
Rocznik
Tom
Strony
627--633
Opis fizyczny
Bibliogr. 31 poz., rys., wykr., tab.
Twórcy
autor
- Warsaw University of Technology, Institute of Electronic Systems, Nowowiejska 15/19, 00-665 Warsaw, Poland
- National Institute of Telecommunications, Szachowa 1, 04-894 Warsaw, Poland
autor
- Warsaw University of Technology, Institute of Electronic Systems, Nowowiejska 15/19, 00-665 Warsaw, Poland
autor
- Warsaw University of Technology, Institute of Electronic Systems, Nowowiejska 15/19, 00-665 Warsaw, Poland
autor
- Warsaw University of Technology, Institute of Electronic Systems, Nowowiejska 15/19, 00-665 Warsaw, Poland
Bibliografia
- [1] A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing, Artech House, Norwood, 1989.
- [2] R. Kashyap, Fiber Bragg Gratings, Academic Press, Boston, 1999.
- [3] K.O. Hill, Y. Fujii, D.C. Johnson, and B.S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication”, Appl. Phys. Lett. 32 (10), 647-649 (1978).
- [4] G. Meltz, W.W. Morey, and W.H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method”, Opt. Lett. 14 (15), 823-825 (1989).
- [5] K.O. Hill, B. Malo, F. Bilodeau, D.C. Johnson, and J. Albert., “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask”, Appl. Phys. Lett. 62 (10), 1035-1037 (1993).
- [6] D.Z. Anderson, T. Erdogan, and A.E. White, “Production of in-fibre gratings using a diffractive optical element”, Electron. Lett. 29 (6), 566-568 (1993).
- [7] R. Kashyap, F. McKee, R.J. Campbell, and D.L. Williams, “Novel method of producing all fibre photoinduced chirped gratings”, Electron. Lett. 30 (12), 996-997 (1994).
- [8] K. Sugden, L. Zhang, J.A.R.Williams, R.W. Fallon, L.A. Everall, K.E. Chisholm, and I. Bennion, “Fabrication and characterization of bandpass filters based on concatenated chirped fiber gratings”, IEEE J. Lightwave Technol. 15 (8), 1424-1432 (1997).
- [9] R. Kashyap, H.-G. Froehlich, A. Swanton, and D.J. Armes, “1.3 m long super-step-chirped fibre Bragg grating with a continuous delay of 13.5 ns and bandwidth 10 nm for broadband dispersion compensation”, Electron. Lett. 32 (19), 1807-1809 (1996).
- [10] G. Meltz, and W.W. Morey, “Design and performance of bidirectional fiber Bragg grating taps”, Conf. Optical Fiber Communication 1 (TuM2), CD-ROM (1991).
- [11] R. Kashyap, A. Swanton, and D.J. Armes, “Simple technique for apodising chirped and unchirped fibre Bragg gratings”, Electron. Lett. 30 (13), 1977-1978 (1994).
- [12] B.J. Eggleton, P.A. Krug, L. Poladian, and F. Ouellette, “Long periodic superstructure Bragg gratings in optical fibres”, Electron. Lett. 30 (19), 1620-1622 (1994).
- [13] P. Gąsior, T. Osuch, and L. Lewandowski, “Inscription of fiber Bragg gratings with wavelength flexibility using phase mask interferometer in Talbot’s configuration”, Proc. SPIE 5775, 216-221 (2005).
- [14] B. Malo, S. Theriault, D. C. Johnson, F. Bilodeau, J. Albert, and K.O. Hill, “Apodised in-fibre Bragg grating reflectors photoimprinted using a phase mask”, Electron. Lett. 31 (3), 223-225 (1995).
- [15] T. Osuch, P. Gąsior, and L. Lewandowski, “System for modification of exposure time in fiber Bragg gratings fabrication with using scanning phase mask method”, Proc. SPIE, 5775, 222-226 (2005).
- [16] P.J. Lemaire, R.M. Atkinsm V. Mizrahi, and W.A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres”, Electron. Lett. 29 (13), 1191-1993 (1993).
- [17] S.E. Kannellopoulos, A. Henderes, and A.J. Rogers, “Simultaneous strain and temperature sensing with photogenerated in-fiber gratings”, Opt. Lett. 20 (3), 333-335 (1995).
- [18] M.G. Xu, L. Dong, L. Reekie, J.A. Tucknott, and J.L. Cruz, “Temperature-independent strain sensor using a chirped Bragg grating in a tapered optical fibre”, Electron. Lett. 31 (10), 823-825 (1995).
- [19] J. Albert, K.O. Hill, B. Malo, S. Th´eriault, F. Bilodeau, D.C. Johnson, and L.E. Erickson, “Apodisation of the spectral response of fibre Bragg gratings using phase mask with variable diffraction efficiency”, Electron. Lett. 31 (3), 222-223 (1995).
- [20] T. Osuch, and Z. Jaroszewicz, “Numerical analysis of apodized fiber Bragg grating formation using phase mask with variable diffraction efficiency”, Opt. Commun. 284 (2), 567-572 (2011).
- [21] T. Osuch, A. Kowalik, Z. Jaroszewicz, and M. Sarzyński, “Fabrication phase masks with variable diffraction efficiency using HEBS glass technology”, Appl. Opt. 50 (31), 5977-5982 (2011).
- [22] K.C. Byron, K. Sugden, T. Bricheno, and I. Bennion, “Fabrication of chirped Bragg gratings in photosensitive fibre”, Electron. Lett. 29 (18), 1659-1660 (1993).
- [23] K. Sugden, I. Bennion, A. Molony, and N.J. Copner, “Chirped gratings produced in photosensitive optical fibres by fibre deformation during exposure”, Electron. Lett. 30 (5), 440-441 (1994).
- [24] M.A. Putman, G.M. Williams, and E.J. Friebele, “Fabrication of tapered, strain-gradient chirped fibre Bragg gratings”, Electron. Lett. 31 (4), 309-310 (1995).
- [25] M. Ibsen, M.K. Durkin, M.J. Cole, and R.I. Laming, “Sinc- Sampled Fiber Bragg Gratings for Identical Multiple Wavelength Operation”, IEEE Photon. Technol. Lett. 10 (6), 842-844 (1998).
- [26] K. Markowski and T. Osuch, “Modeling of fiber Bragg gratings written in thermally tapered optical fibers”, Proc. SPIE 8903, 89030U-1-89030U-7 (2013)
- [27] T. Osuch, D. Herman, K. Markowski, and K. Jędrzejewski, “Accelerated-aging tests of fiber Bragg gratings written in hydrogen loaded tapered optical fibers”, Proc. SPIE 9228, 922808-1-922808-5 (2014).
- [28] K. Markowski, and T. Osuch, “Numerical and experimental studies of dispersion characteristics of tapered fiber Bragg gratings under the influence of axial strain”, Proc. SPIE 9228, 92280T-1-92280T-5 (2014).
- [29] T. Osuch, K. Jędrzejewski, L. Lewandowski, and W. Jasiewicz, “Shaping the spectral characteristics of fiber Bragg gratings written in optical fiber taper using phase mask method”, Photonics Letters of Poland 4 (4), 128-130 (2012).
- [30] K. Madziar, A. Szymańska, and B. Galwas, “The use of photonic techniques in tunable microwave oscillators”, Proc. SPIE 8902, 89021M-1-89021M-8 (2013).
- [31] K. Madziar, B. Galwas, and T. Osuch, “Fiber Bragg gratings based tuning of an optoelectronic oscillator”, Proc. Int. Conf. MIKON 2014 1, 1-4 (2014).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7089c9b2-a99b-4278-ad19-4c6812528bcf